
483

CONFIGURING RESORCERER

CONFIGURING RESORCERER

INTRODUCTION

This chapter explains how you can configure various aspects of Resorcerer’s
operation. Future versions of Resorcerer may provide a more direct means
of manipulating these settings. Make sure that the current Preferences…
dialog doesn’t already support the settings you are interested in.

You do not need to do anything described in this chapter to run Resorcerer
successfully; however, you may benefit from being familiar with some of
these configuration parameters, especially those that pertain to future
compatibility or current Mac toolbox bugs.

You will need to use Resorcerer to edit a copy of itself in order to set various
of its configuration parameters, most of which are kept in Resorcerer’s own
resources. You should be very familiar with the general aspects of editing
resources with Resorcerer, especially using the Hex, Menu, and StringList
Editors.

TOPICS COVERED

• Maximum number of files
• Scrap types to import
• Resource type descriptions
• Finder file flags
• Resource map flags
• The read-only resource map bug
• Screen copying timeout
• The ‘ictb’ Dialog Manager bug
• Adding custom screen sizes
• Displaying resource data

484

RESORCERER USER MANUAL

MAXIMUM NUMBER OF FILES

When Resorcerer first starts up it allocates a file table with a maximum
number of entries. One entry is used for every simultaneously open file that
you may want. Initially, the size of the file table is 16; if you try to open
more, Resorcerer will complain about the table being full.

If you need to edit more files simultaneously than the current maximum
allows, you must change the startup file table size. This number is kept in
the first two-byte word of one of Resorcerer’s own resources, ‘FMAX’ 128.

Note: Currently, the size of each file table entry is about 1900 bytes, so
you may not want to set the maximum number of files to a very
high number indiscriminately. Resorcerer will ignore any file
table count less than 2. Note also that the <Resource Scrap> file
is not included in the file table.

To change the file table
maximum, make a temporary
copy of your working version of
Resorcerer using the Finder’s
Duplicate command. Run the
copy and open the original to
read in all of the original’s
resources. Select ‘FMAX’ in the
Types List, and then open the
‘FMAX’ 128 resource with the
Hex Editor.

Byte 0 is the high-order byte of
the file table count and should usually be 0, byte 1 is the low order byte of
the count and it should contain the maximum number of files. Select byte 1
of the resource and type in the two hex digits for your new file count. Then
close the resource, close Resorcerer’s resource file, and quit the copy of the
old version you are running.

Once you’ve saved the resource and closed the file, you should run the
original you just modified in order to ensure that you’ve made the correct
change. You can then throw the copy of Resorcerer you just made into the
Trash, or keep it in your backup archives.

485

CONFIGURING RESORCERER

SCRAP TYPES TO IMPORT

Resorcerer’s <Resource Scrap> is designed to import any type of scrap from
the Mac clipboard, where the data is assigned the next free resource ID and
given the name, “(from Desk Scrap)”. Once this data is in the
<Resource␣Scrap> file, you can then paste these new resources into the file
you are editing.

The list of types that Resorcerer looks for in the scrap is kept in one of
Resorcerer’s own string list resources: ‘STR#’ 138 (the ID may vary in
different versions, so you might want to search for the word “Scrap” in its
name, since it is named “Scrap Types”). Resorcerer interprets the first four
characters of each string in this resource as a scrap type name. If the Mac’s
clipboard file contains a scrap of any of these types, Resorcerer imports it
into its <Resource Scrap> file, converting the scrap data to a resource.

To add a new scrap type
or to remove an old scrap
type from this list, make
a temporary copy of your
working version of
Resorcerer using the
Finder’s Duplicate
command. Run the copy
and open the original to
read in all of the
original’s resources.
Select ‘STR#’ in the Types
List, then open the ‘STR#’
138 resource with the StringList Editor. Use the StringList Editor to make
your changes.

The first string in the resource should be the type, ‘RSC#’, which is a special
scrap type that Resorcerer recognizes as containing a list of resources,
including resource data, names, and attributes for each resource in the list.
The ‘RSC#’ type lets Resorcerer import multiple resources from another
application that supports such a scrap type. When Resorcerer imports a
piece of scrap of this type, it parses the single piece of scrap into all the
separate resources it contains, and adds them to the <Resource Scrap> file.

The structure of a ‘RSC#’ scrap is described by the following template
(‘TMPL’) fields:

486

RESORCERER USER MANUAL

OCNT Resources
LSTC •••••

FLNG Reserved (must be 0)
TNAM Resource type
DWRD Resource ID
FBYT Filler
HBYT Resource attributes
ESTR Resource name
LHEX Long byte count, followed by resource data
AWRD Align

LSTE •••••

Once you’ve saved the ‘STR#’ 138 resource and closed the file, you should
run the original you just modified in order to ensure that you’ve made the
correct change. You can then throw the copy of Resorcerer you just made
into the Trash, or keep it in your backup archives.

RESOURCE TYPE DESCRIPTIONS

Each time you click on a type in a file’s Types List, Resorcerer fills the
Resources List with all resource of that type. It also redraws the label above
the list. Because resource types can only be four characters, they tend to be
cryptic abbreviations that are hard to remember.

Therefore, when Resorcerer creates the new label above the list, it looks up a
plain-language, unabbreviated string that gives a better idea of what the
resource is all about. These etymological labels, and the types they belong
to, are kept in a resource in Resorcerer’s own resources: ‘TYP#’ 128, with the
resource name, “Type Labels”.

The TypeList (‘TYP#’) resource is very similar in structure to a standard
StringList (‘STR#) or Template (‘TMPL’) resource, and in fact the same
Editor edits all three types internally. It is simply a list of four-character
types with a Pascal string associated with each type.

As new resource types get defined and eventually standardized, or if you
have private resource types whose function you want to be reminded of each
time you browse them, you may want to add more label strings to this
dictionary.

To do this, make a temporary copy of your working version of Resorcerer

487

CONFIGURING RESORCERER

using the Finder’s Duplicate
command. Run the copy and open
the original to read in all of the
original’s resources. Select ‘TYP#’
in the left list, and then open the
‘TYP#’ 128 resource with its
Editor. Find an appropriate spot
to insert your new type and its
plain language string, and put it
there.

Once you’ve saved the resource
and closed the file, you should run
the original you just modified in
order to ensure that you’ve made
the correct change. You can then
throw the copy of Resorcerer you
just made into the Trash, or keep
it in your backup archives.

FINDER FILE FLAGS

Each file on the Mac has a word of 16 attribute bits that help the Finder
make decisions about the file in various situations. As the Mac System and
Finder have evolved over the years, these bits have changed their meaning.
Certain reserved bits in the past have been given new meanings; in other
cases, some older meanings have been discontinued or redefined.

Resorcerer’s File Window makes the values of
certain of these bits visible to you in the Finder
Flags pop-up menu that you can see when you
choose File Info from the File menu. You can
check or uncheck any item in the pop-up
independently of any other item. Since each item in
the menu explicitly starts with the bit number it
represents, Resorcerer creates a new attribute word by scanning the pop-up
for items that are checked or not checked, looking up the bit number at the
start of the item, and setting or clearing that bit in the attribute word.

Because some of these bits have changed between System 6 and System 7,
Resorcerer contains a menu for when you are running under System 6, and
another menu for later systems. In either case, if you want to be able to

488

RESORCERER USER MANUAL

directly set a bit that is not in the menu because of some new feature that
Apple has implemented, you should edit one or the other of these ‘MENU’
resources.

Make a temporary copy
of your working version
of Resorcerer using the
Finder’s Duplicate
command. Run the copy
and open the original to
read in all of the
original’s resources.
Select ‘MENU’ in the left
list, and then open the
‘MENU’ resource for
either popup with its
Editor. After making the
Resources List the Active
List, you can search for the menu you want by typing "Finder" and tapping
the TAB key to get to the right one.

Each item in the menu begins with the bit number of the attribute the item
represents, followed by a ‘.’ (period) and a space, followed by the item text
that gives a hint about the bit’s meaning. If the bit number is less than 10,
you should precede it with an Option-Space, to make all the numbers line up
vertically in the menu. Find an appropriate spot to insert your new bit
number and label, and put it there. Since the bit numbers are explicitly
stored within each item, the order of the items in the menu is immaterial.
The 16 bits are numbered from 15 (high order bit) down to 0 (low order bit).

Note: The Finder Flags word uses bit numbers 3, 2, and 1 to encode one
of 8 colors/labels with which the file’s black & white icon might be
marked. These bits are already taken care of in the Color pop-up
menu elsewhere in the File Window dialog.

Once you’ve saved the resource and closed the file, you should run the
original you just modified in order to ensure that you’ve made the correct
change. You can then throw the copy of Resorcerer you just made into the
Trash, or keep it in your backup archives.

489

CONFIGURING RESORCERER

RESOURCE MAP FLAGS

In addition to the file attributes of interest to the Finder, the resource fork of
any file can have its own set of attribute flags. These flags affect how the
Resource Manager behaves with respect to resources in your file. When an
application calls the Resource Manager’s GetResFileAttrs routine, the
routine delivers a word some of whose bits encode various attributes that the
resource map has. The Manager’s SetResFileAttrs routine lets your
program set the attributes.

In the same manner as explained in the previous “Finder File Attributes”
section, Resorcerer enables you to set or clear certain of these bits according
to the entries found in the Map Flags pop-up menu in the File Window.
Because each item in the menu explicitly contains the bit number that the
item represents, you can add, remove, or rearrange items in this menu using
Resorcerer’s Menu Editor. Resorcerer can only set or clear attribute bits for
which there are explicit entries in the Map Flags pop-up menu; all other bits
in the attributes word are left untouched.

Make a temporary copy of your working version of Resorcerer using the
Finder’s Duplicate command. Run the copy and open the original to read in
all of the original’s resources. Select ‘MENU’ in the Types List, and then
open the pop-up ‘MENU’ resource with its Editor. After making the
Resources List the Active List, you can search for the menu you want by
typing “Map” and tapping the TAB key to get to the right one.

Each item in the menu begins with the bit number of the attribute the item
represents, followed by a ‘.’ (period) and a space, followed by the item text
that gives a hint about the bit’s meaning. If the bit number is less than 10,
you should precede it with an Option-Space, to make all the numbers line up
vertically in the menu. Find an appropriate spot to insert your new bit
number and label, and put it there. Since the bit numbers are explicitly
stored within each item, the order of the items in the menu is immaterial.
The 16 bits are numbered from 15 (high order bit) down to 0 (low order bit).

Note: Currently, most of the resource map attribute bits remain
undocumented, reserved, and private to Apple’s software, so you
should only make these changes if you really, really know what
you are doing. Anything Apple has not officially documented
should always be considered as subject to change.

Note: The next section contains important information related to the
attributes word bit ordering.

490

RESORCERER USER MANUAL

THE READ ONLY RESOURCE MAP BUG

There is a bug (or feature, depending on your point of view) in current
versions of the Resource Manager that keeps it from being able to properly
set one of the more useful documented resource map attributes, the
mapReadOnly bit. This attribute bit adds an extra level of protection when
any other application, via the Resource Manager, accesses your file.

Consequently, Resorcerer changes the resource map attributes directly in
your file, bypassing the Resource Manager entirely after your file has been
closed. This is, however, a violation of the resource map’s privacy as a data
structure, which only the Resource Manager should know anything about. If
in the future Apple changes the resource map structure in such a way that
the position of the map attributes word changes, then Resorcerer’s current
method will not work and more than likely will damage the file’s map.

Because of this possibility, we
have isolated the code that
bypasses the Resource Manager
into a small resource, ‘ONLY’ 128.
If this resource is present,
Resorcerer calls upon it to read
and write only the resource map
attribute word. If you delete this
resource, or change its type or ID
to anything else, Resorcerer will
only attempt to set the resource
map attribute word using the
Resource Manager’s SetResFileAttrs routine.

Sorcery: Although Apple has allocated a full 16-bit word to hold attribute
bits within every resource map, the Resource Manager’s
SetResFileAttrs takes the low order byte of its word argument
and places it in the high order byte of the word in the map. The
bits in the low order byte of the resource map word remain
completely reserved and private to Apple. Therefore, before the
‘ONLY’ resource delivers the map attribute word to Resorcerer, it
swaps the high and low order bytes. When the attributes are
given back to the ‘ONLY’ routine, it unswaps the bytes and saves
them in the map. Thus, if you are privy to the meaning of these
undocumented map attributes, you can configure your copy of
Resorcerer to give you access to them by creating entries for bits 8
to 15 in the Map Flags pop-up menu described earlier.

491

CONFIGURING RESORCERER

If you are not privy to the meaning of these bits, changing any of
them is guaranteed to break something (you should let sleeping
dogcows lie).

SCREEN COPYING TIMEOUT

Resorcerer’s screen-copying facility uses a “marching ants” marqee that you
can drag anywhere on your screen. Because Resorcerer is temporarily
drawing and erasing screen real-estate that doesn’t belong to it, and because
your next mouse click is almost certainly positioned over some other
application’s window, you can’t switch to another application while in this
mode. Resorcerer is “MultiFinder-hostile” while you are screen-copying.

Since you do not need to actively do anything to remain in screen copy mode
(i.e. you don’t have to hold the mouse button), the possibility exists that you
might get interrupted, leaving Resorcerer in a state where it is not allowing
MultiFinder to give system time to other applications, which might need
time to do important things.

Consequently, screen copy mode halts by itself after a timeout period.
Initially, this timeout is set to 1800 ticks, or 3 minutes, but you may want to
shorten it if this is too long. The timeout value is kept in Resorcerer’s
‘TOUT’ 128 resource.

To change the timeout, use a
copy of Resorcerer to edit the
original. Open the original to
read in all of the original’s
resources. Select ‘TOUT’ in
the Types List, and then open
the ‘TOUT’ 128 resource with
the Hex Editor.

The length of this timeout
period, in 1/60 second ticks, is
kept in the first two-byte word
in Resorcerer’s ‘TOUT’ 128 resource.

Once you’ve saved the ‘TOUT’ resource and closed the file, you should run
the original you just modified in order to ensure that you’ve made the correct
change. You can then throw the copy of Resorcerer you just made into the
Trash, or keep it in your backup archives.

492

RESORCERER USER MANUAL

THE ‘ICTB’ DIALOG MANAGER BUG

There is a bug in the Mac’s Dialog
Manager that keeps it from properly
setting the font name and size for
text items that refer to the same
entry in its item color table (‘ictb’)
resource. This is quite often the
case since it’s a good idea to make
all text items in a dialog have the
same style.

A typical symptom of the bug is
that the first text item to have the
custom style looks fine, but
subsequent text items, although
they keep their custom font size,
revert to the System font (this
bug was discovered with
Resorcerer’s Try out… command
in the Dialog Editor).

The bug does not arise, however,
if the ‘ictb’ resource is built with a
duplicated (rather than shared)
entry for each text item and its
font name. Unfortunately, when
a dialog has a lot of text items in it, these duplicated entries can add up to a
lot of wasted space, which the structure of the ‘ictb’ resource was designed to
avoid.

The Dialog Editor is configured to build an expanded ‘ictb’ resource (that is,
one with unique text style entries per dialog item) when you save (or Try
Out…) the dialog to which the ‘ictb’ refers. If, on the other hand, you hold
the Option key down as you save (or Try Out…) your dialog, the Editor will
create a compact ‘ictb’ resource with shared entries for the similarly styled
or colored items in the dialog (this is how the above illustration was created).

If and when Apple fixes this bug, you can re-configure the Editor to swap the
sense of the Option key so that the Editor will always create the compact
‘ictb’ resource unless you are holding the Option key down. To do this, you
need to remove the ‘OSWP’ 128 resource (“Option Swap”) from Resorcerer’s
own resources if there is one already there.

493

CONFIGURING RESORCERER

As usual, make a temporary copy of your working version of Resorcerer
using the Finder’s Duplicate command. Run the copy and open the original
to read in all of the original’s resources. Click on the New button while the
Types List is active, and enter ‘OSWP’ as the new resource type, and 128 as
the new ‘OSWP’ resource’s ID. Click the Create button to create the
resource using the Hex Editor.

You don’t actually need to keep any data in the ‘OSWP’ resource. The Dialog
Editor uses the resource’s presence or absence to determine the sense to
assign the Option key. If ‘OSWP’ 128 is there, the Editor defaults to
creating expanded ‘ictb’s unless you hold the Option key down; when it is
missing, the Editor creates compact ‘ictb’s unless the Option key is held
down.

After you’ve added or deleted the ‘OSWP’ resource and closed the file, you
should run the original you just modified in order to ensure that you’ve made
the correct change. You can then throw the copy of Resorcerer you just made
into the Trash, or keep it in your backup archives.

Once the Dialog Manager bug gets fixed (this is very unlikely, however), you
should re-open Resorcerer and delete the added ‘OSWP’ resource, so that
compact ‘ictb’s will once again be created without intervention on your part.

494

RESORCERER USER MANUAL

ADDING CUSTOM SCREEN SIZES

The Dialog Editor supports an Overview
Window that displays your dialog or alert on
a half-size replica of a Mac screen. You can
change to different screen sizes by using a
popup menu to choose from among the
various standard Macintosh screens that
Apple manufactures.

If you want to add entries to this popup
menu, make a copy of Resorcerer, double-
click on the copy, and open the original. Use
the Find All… command to find and open the
menu that contains the string “Classic” or
whatever (as of this writing, it is ‘MENU’ 205).

After adding the names of your custom screens to the popup menu, close the
‘MENU’ resource and open the ‘SCTB’ 128 resource. The format of this
resource is simply an indefinite list of pairs of 2-byte words. If you want to
edit the resource with the Data Editor, create a template like this:

LSTB
DWRD Screen height
DWRD Screen width

LSTE

The entries in this list must parallel the entries in the popup menu. If you
have appended two screen names to the menu, you need to append two
(height, width) coordinate pairs to the ‘SCTB’ resource.

Close the resources, and then close the file. Run the original copy of
Resorcerer to make sure it’s working with the new screen sizes.

495

CONFIGURING RESORCERER

DISPLAYING RESOURCE DATA

Each time you click on a type in the Types List, Resorcerer fills the
Resources List with all the resources of that type. The default entry in this
list consists of the resource attributes, the resource ID, and its optional
name string, but there is no indication of what the value of the resource’s
data might be.

It is, however, nice to be able to see the value of the resource data to get a
better idea of which resource is which. This is as true for resources whose
data is graphical in nature, such as icons, cursors, pictures, etc., as it is for
strings, or file references, versions, or other “non-graphical” data.

Resorcerer supports an extensible mechanism for viewing resource values in
the Resources List of the File Window. This capability is implemented by
adding resources of type ‘SHOW’ to Resorcerer’s resources.

Each ‘SHOW’ resource contains compiled code for a simple, single entry-
point subroutine that takes one argument, a pointer to a ShowRecord . The
ShowRecord contains fields such as the handle to the resource data, its type
and attributes, important pre-computed values, etc., that the subroutine
uses to display the resource value. Whenever Resorcerer’s List Manager
needs to display the value of a given resource that has a ‘SHOW’ resource
installed for it, the List Manager loads and calls the code resource to do so.

The resource name of each
‘SHOW’ resource declares to
Resorcerer the calling convention
to use, how high the list cell
should be, and what type of
resource the subroutine knows
how to display. The first
character of the name should be
either ‘C’ or ‘P’, to indicate
whether the compiled code is a C
subroutine or a Pascal subroutine.
This lets Pascal programmers
work in Pascal, and C programmers work in C, without forcing either camp
to follow the conventions of the other. The second character in the name
should be a space, and is ignored. The third character begins the digits of
the height of the Resources List cell in pixels that Resorcerer should use.
Another space follows the last digit, and the next four characters of the
name indicate which type of resource the ‘SHOW’ resource displays.

496

RESORCERER USER MANUAL

Example: ‘SHOW’ 741, with the resource name, “C 36 SHNK”, would get
called as a C subroutine each time Resorcerer wanted an ‘SHNK’
resource drawn in some Resources List cell. Prior to displaying
any ‘SHNK’ resources, Resorcerer would build the Resources List
with a cell height of at least 36 pixels.

Note: The cell height for ‘SHOW’ resources should be a multiple of 12
pixels, and should not be more than 96 pixels. Also, the code
within the ‘SHOW’ resource should not assume that the cell
height is in fact the same as in its resource name, only that the
cell height is at least the value in the name. The actual cell
height is available by looking in the ShowRecord .

DESIGN CONSIDERATIONS

The ShowRecord contains a field, message , whose value selects what
function the ‘SHOW’ resource should perform. Currently, only two
messages are defined:

#define shDeclareVersion 0
#define shDrawResource 1

The shDeclareVersion message is sent to the ‘SHOW’ resource only
once each time the Resources List is built for a given resource type. It is
a request to tell Resorcerer what version the ‘SHOW’ resource code
supports. Your ‘SHOW’ should set this to 0, which is the version being
described here. No other version is currently defined.

Resorcerer’s List Manager takes care of highlighting the contents of list
cells, and of drawing the resource attributes, resource ID, and any
owner decoding of the ID. After calling the ‘SHOW’ resource to draw
the data, Resorcerer draws the resource name at the current pen
position. Currently, the resource attributes and ID always appear in
the left part of the list cell.

It is your ‘SHOW’ resource’s responsibility to determine what part of the
resource to draw and where to draw it within the list cell bounds. It
must also leave the QuickDraw pen at the start of the position where
Resorcerer can finish drawing the resource name. This represents a
compromise between the pure generality of allowing the ‘SHOW’ to
draw everything (e.g. a complete List Definition Function (‘LDEF’)), and
uniformity of interface which makes the program easier to use at the
expense of the fun of programmers. It also allows ‘SHOW’ resources to

497

CONFIGURING RESORCERER

be somewhat smaller than ‘LDEF’s, and makes them easier to write.

If we need more general ‘SHOW’s in the future, we’ll create a new class
of them with different versions. Note that if a ‘SHOW’ code resource
does absolutely nothing (e.g., it just returns), then the list cell will look
like a standard default Resources List cell.

STRUCTURE OF A SHOWRECORD

The following declaration is taken from a SHOW.h C header file:

#include <Windows.h>

// Pascal or C function to deliver another resource from same
file

typedef struct {
 Handle (*GetResData)(ResType type, short id);
 } C_Callbacks;

typedef struct {
 pascal Handle (*GetResData)(ResType type, short id);
 } P_Callbacks;

typedef struct { // Version 0 ShowRecord structure

 long version; // Version of SHOW reported back to
Resorcerer
 short message; // Function selector
 short errCode; // Place to tell caller bad news

 unsigned short flags; // Reserved flags bits
 Rect *bounds; // Current List32Manager's cell
bounds
 GrafPtr port; // Current port cell is being drawn
in
 short attrBaseline; // Attribute box's baseline (Y)
 short leftMargin; // Where data can begin being
drawn

 short sysFontSize; // Current system font size
 short reserved;

 short fontNum; // Current font (usually Geneva 9 bold)
 short fontSize; // Current font size
 short fontFace; // Current font face
 FontInfo fInfo; // Current font ascent, descent, etc.

498

RESORCERER USER MANUAL

 Handle hndl; // Handle to unlocked detached resource
data
 ResType type; // This resource type (4 characters)
 short ID; // This resource ID
 short attrs; // Resource attributes
 long size; // Resource size in bytes

 Byte *IDstr; // Pascal str of resource ID (6 chars max)
 Byte *ownerStr; // Pascal str of Owner breakdown in []'s
 Byte *sizeStr; // Pascal str of resource size
 Byte *nameStr; // Pascal str of resource name

 void *rsrvd1; // Private Resorcerer internal stuff */
 void *rsrvd2;

 union {
C_Callbacks C;
P_Callbacks P;
} call;

 #define NUMSHOWEXTRA 2
 long extra[NUMSHOWEXTRA]; // For expansion; zero
if unused

 } ShowRecord, *ShowRecordPtr;

Each ‘SHOW’ resource should be compiled as a single-entry-point C
subroutine or Pascal procedure that takes a pointer to a ShowRecord as
its only argument. With the exception of the version and errCode
fields, you should not write to any of the fields in this structure.

The version field is where the ‘SHOW’ resource tells Resorcerer what
version it is when the message field is shDeclareVersion . The type
of ShowRecord that Resorcerer provides during later calls may depend
on the value returned in the version field. You should set this to 0.
All ‘SHOW’ code resources must support the shDeclareVersion
message.

message contains an integer selector that indicates what function
Resorcerer wants the ‘SHOW’ resource to perform. Currently, only
shDeclareVersion and shDrawResource are passed in this field.

The errCode field is set to 0 prior to the call, so if all goes well you can
ignore errCode . Currently, no errors are defined, so you can just leave
it alone. However, you might want to give the user an indication of

499

CONFIGURING RESORCERER

some error condition by drawing something into the list cell. For
example, the ‘SHOW’ resource for animated cursor (‘acur’) resources
looks up the cursor IDs in the data, and attempts to draw all the cursors
in the list cell. If it finds that the ‘acur’ resource refers to a non-existent
‘CURS’ resource, then it indicates this by drawing a gray square where
the cursor would normally appear.

The flags field is currently reserved.

bounds is a pointer to a rectangle whose coordinates are the current list
cell Resorcerer wants the resource drawn in. These are window
coordinates. Resorcerer’s List Manager has already set the clipping
region to this rectangle.

port is the current window’s port.

The attrBaseline field is the Y value of the baseline that matches
where Resorcerer has just drawn the boxed resource attribute icons. If
you want any resource name to appear to the right of the data you’ve
drawn, you can use this value to place the Quickdraw pen at the proper
Y position.

The leftMargin field is the X value in window coordinates at which it
is okay to begin drawing resource data. Area to the left of this position
has been used by Resorcerer for the attributes, ID, etc.

The sysFontSize field is made available here so you don’t have to
figure it out. If you want to display any string data from your resource
in the current system font, you will want to use the value of this field
while you temporarily set the window font to the system font to draw
the string.

The font number, size, and face of the font that Resorcerer is currently
using to display the resource ID and name are to be found in the
fontNum , fontSize , fontFace fields. The fInfo field contains this
style’s font information record. You should restore the current text
style to these values if you change them while you draw the data.

The hndl field is a handle to the unlocked, non-purgeable, detached
resource data. It is not a handle that the Resource Manager will
recognize as a resource. You will probably need to lock it while you scan
or draw the data in it. When you’ve finished, you should restore any
changed state to whatever it was before you changed it.

The type , ID , attrs , and fields provide the resource’s type, ID,

500

RESORCERER USER MANUAL

attributes, and size. Since the data in hndl is a detached resource,
these fields provide the pertinent resource information that you would
otherwise not be able to determine. You can ignore them for now.

The IDstr , ownerStr , sizeStr , and nameStr fields are pointers to
Pascal strings that contain text versions of the resource’s ID, decoded
owner ID, size, and name. With the exception of nameStr , you can
ignore these fields, since Resorcerer takes care of drawing them.
Resorcerer also draws the value of nameStr; however, the position at
which it begins to draw the name is up to you, and may depend on
whether the string is empty or not. For instance, when the value of a
resource, such as a pattern list (‘PAT#’), extends arbitrarily far to the
right, you will want to leave room in the bottom of the list cell for
Resorcerer to fill in the resource name, starting at leftMargin . If the
resource name is empty, however, this looks unbalanced, and in this
case you might want simply to center the resource value vertically in
the list cell.

call.C.GetResData or call.P.GetResData is a pointer to a
Resorcerer function that delivers a handle to a detached copy of any
resource in the same file as the resource being drawn. It is either a C or
Pascal function, depending on the first character of the ‘SHOW’ code
resource’s name, and it takes two arguments: the four-byte type and
two-byte ID of the resource you want to peek at. You must call
GetResData to access the latest edited value of any given resource;
calling Get1Resource or any other Resource Manager routine will only
deliver the resource as it was last saved on disk, or fail altogether.
Since the handle returned is a copy, it is your ‘SHOW’ routine’s
responsibility to dispose of it (using DisposeHandle) before returning.
GetResData delivers NIL if it can’t find the resource, or has any other
problem.

reserved , rsrvd0 , rsrvd1 , and rsrvd2 are private Resorcerer fields.

The extra array is for future expansion, and all values in it are
currently set to 0.

EXAMPLE OF A ‘SHOW’ CODE RESOURCE

501

CONFIGURING RESORCERER

The following is an example of the C code you might use to create a
‘SHOW’ “C 24 STR ” resource (don’t forget the trailing space character)
that displays the value of a Pascal string resource in a list cell at least
24 pixels high. Regardless of the current window font, or current list
font, we choose to draw all strings in the system font (which can vary
according to country):

#include "SHOW.h"

void main(register ShowRecord *res) {
long margin,height;
Rect dst;

switch(res->message) {
case shDeclareVersion:

res->version = 0L;
break;

case shDrawResource:
/* Just use the user’s current default text style */
height = res->fInfo.ascent + res->fInfo.descent +

res->fInfo.leading;
SetRect(&dst,

res->leftMargin, 0, res->bounds->right, height);
/*
 * Center dst vertically in cell, unless there's a
 * name, in which case both must fit. This SHOW code
 * resource should therefore have a cell height of 24
 * (twice the default height for a line of text).
 */
if (*res->nameStr)

margin = 0;
 else

margin = ((res->bounds->bottom - res->bounds->top)
- height) / 2;

OffsetRect(&dst, 0, res->bounds->top + margin);
MoveTo(dst.left, dst.bottom-res->fInfo.descent);
HLock(res->hndl);
DrawChar('“'); DrawString(*res->hndl); DrawChar('”');
HUnlock(res->hndl);

if (margin == 0)
MoveTo(dst.left, res->bounds->bottom-res-

>fInfo.descent);
break;

} /* End of switch */

} /* End of main */

502

RESORCERER USER MANUAL

Option-clicking on the
resource type, ‘STR ’, toggles
whether to use any available
‘SHOW’ resource.

If a string resource has a
resource name, the ‘SHOW’
resource lets it be drawn
under the value of the string.

