I
THE TEMPLATE EDITOR

INTRODUCTION

This chapter explains how to use Resorcerer's Template Editor to design
descriptions, called templates, of your own custom resources. The template-
driven Data Editor then lets you edit your custom types using the
descriptions you've built with the Template Editor. The Data Editor is more
fully explained in the “Data Editor” chapter.

You should be familiar with the basics of editing resources, as explained in
the “Editing Resources” chapter earlier in the manual. Also, the Template
Editor has an interface that is nearly identical to that of the String List
Editor, so you may want to familiarize yourself with its general operation
(such as cutting and pasting fields/strings, printing fields/strings, etc.) in the
chapter, “The String List Editor”.

Toprics CoVvERED

= Custom resource types

< Creating a resource template
= Using the Template Editor

= Template field types

< Examples of templates

= Designing filters

383

REsSORCERER UseErR MANUAL

CustoM REsoURCE TYPES

Only a few hundred resource types, such as ‘DLOG’s, ‘ICON's, ‘STR#'s, have
been publicly defined by Apple and its developer community. The
description of the internal structures of these resources is documented in
various programming manuals (primarily Apple’'s own Inside Macintosh)
and Rez template files. Resorcerer has many Editors dedicated to making it
easy for you to edit the most common of these standard resources.

Although these predefined types are often sufficient for many Mac
applications, you may want to have your own custom resource types that are
private to your application. To create a custom resource type you will first
want to find a new four-character name for your type that doesn't conflict
with existing resource types; your program can then use the Resource
Manager to deliver that resource to it at the appropriate times.

The Resource Manager in the Macintosh is designed to access resources
whose types are represented by any combination of four ASCII characters.
Thus, there are as many possible types as there are four 8-bit character
combinations, which is to say, something like 4 billion types available.

Note: Apple has reserved resource type names consisting of all
lowercase characters for its own use. Third-party applications
should not use all lowercase type names for any custom resources.

For example, Resorcerer is a normal Mac application that uses both
standard and custom resources. One type of custom resource it uses is its
‘RSYN'’ resource. ‘RSYN'’ is not among the standard Mac types; the name
was chosen by the program’s author to refer to Resorcerer’s resource
synonym table, which is kept as an ‘RSYN' resource in Resorcerer’s own
resources (for more on what it's for, see the Synonym Preferences section of
the “Preferences” chapter).

REsSoOURCE TEMPLATES

Resorcerer can't anticipate all the possible custom resource types that
every Mac programmer might want to create and edit. With upwards of
4 billion possible custom types, there can never be more than a
relatively few resource Editors in Resorcerer (or any other general
resource editing program) dedicated to helping you edit the standard
documented Mac resources.

384

THE TEMPLATE EDITOR

Although any resource, regardless of type, can always be edited using
the general-purpose Hex Editor, this is nearly always a tedious, error-
prone, and unpleasant task. The whole purpose of the Hex Editor is to
hide the structure of the data from you, and it is the editing method of
last resort.

A better solution is to describe to Resorcerer the structure of your
custom resource. Based on a description of that type of resource,
Resorcerer can then customize its Data Editor to let you edit resources
of your described custom type.

Resorcerer keeps the descriptions of the structure of custom resources
in what are called resource templates. Each template is kept as a
resource of type ‘TMPL’ whose resource name begins with the same four
characters as the name of the custom resource type it describes. Each
template is essentially a list of the data fields (their types and
descriptions) that, in sequential order, describe the structure of the
packed data in your custom resource.

Note: With one minor exception, Resorcerer’s ‘TMPL’ resources
are upwardly compatible with ‘TMPL’ resources found in
Apple’s old ResEdit program. However, Resorcerer
supports more than three times as many field types as
ResEdit. These field types are documented in the
“Template field types” section later in this chapter.

Fixep-LENGTH AND VARIABLE-LENGTH DATA

When each part of a resource data structure has a known fixed length,
it is very easy to compute the offset into the resource data at which to
access that part of the resource. However if any part of a resource has a
variable size — for example, an embedded, unpadded string — then it is
no longer so easy to compute the offset of the start of any field that
occurs later in the data. This means that algorithms that access the
resource must at some point begin scanning the data sequentially to
find a field of interest if it occurs after a variable-length item in the
data. For large resources, this scanning can become slow.

One way to speed up the scanning of resource data is to include explicit
length fields in the data. These fields precede the variable-length item
so that your application’s (or the Toolbox’s) scanning algorithm can
compute where the end of the item is without scanning through its data.
For very complicated sequences of variable-length items the Data Editor

385

REsSORCERER UseErR MANUAL

386

supports explicit sizeof and skip offsets fields that let you embed
automatically computed length information for anything you want.

For example, variable-length Pascal strings begin with a single length
byte that can be used to find the start of the first field after the string; C
strings, on the other hand, end with a null byte so that they must be
scanned in order to find their ends (in C, this is the price of being able to
have arbitrarily long strings). Lists embedded in resource data are
another example of a higher level variable-length object that must have
an initial count field to indicate how long the list is.

Placing size information about internal structures in a resource is
highly recommended (not to mention absolutely necessary!) if you want
to design a resource to be both extensible and backwardly compatible.

FILTERED TEMPLATES

Templates are designed to support the description of scannable
sequences of individual data fields, both fixed- and variable-length. In
order to access variable-length fields randomly (that is, without
scanning), it is necessary to design an index at the start of the resource
data. The index is basically a table of contents that consists of a list of
fixed length fields containing (at the very least) offsets to the starts of
the later variable-length fields. More complicated indexes might also
contain explicit length fields, key fields, or other fixed-length data.
There are many different ways to do this, but unfortunately there is no
easy way to design such a data structure directly using the “language”
of ‘TMPL' field types.

The Data Editor supports filtered templates to solve the above problem
in a general way. A filtered template for a particular resource type
describes a closely related, editable data structure that you can edit, but
which is not the same as the resource data. When the Data Editor
recognizes that the template is a filtered template, the Editor will
automatically pre- and post-process the actual resource data into and
out of the form described by the filtered template. This conversion is
performed by a filter — that is, a code resource of type ‘FLTR’ that
accompanies the ‘TMPL’ resource.

You can design the structural rules of a given resource data type into its
filter, which converts the data into a scannable and editable form. After
editing the converted data, the filter scans the data and re-inserts
whatever structural information it needs—such as an index—back into
the resource. With filters, you can bring the full power of any compiled

THE TEMPLATE EDITOR

high-level language to bear on the maintenance of complex resource
data structures, without at the same time losing the power of
interactively editing the parts of the resource data that you are more
likely to care about. Structural information such as indexes, skip
offsets, and the like are, after all, for the benefit of the scanning
algorithms, not for the benefit of the user who would just as soon ignore
the structural information altogether while editing.

For more on filtered templates, see the description of the ‘FLTR’ field
type and the “Designing Filters” section later in this chapter.

CREATING A RESOURCE TEMPLATE

Creating a new ‘TMPL’ resource in
a file you've opened is no different Known types Choose the type (and optional 1D
from creating any other new e b erearador resource
resource (see the “Editing

Resources” chapter). Make sure the Type:

File Window is in front, click once in o: [129 | [uniquetn)
its Types List (preferably on the
TMPL entry if there is one), and
then click the New button.

Name: [SLAG |
Attrs: (J& J8 OJ&a J= %

[create || [cancel]

Resorcerer will ask you to specify

the various attributes of your new ‘TMPL’ resource. The resource ID and
attributes can be whatever you want; however, the first four characters of
the name of the ‘TMPL’ resource must be the four-character resource type
that the ‘TMPL is going to describe.

Note: For future compatibilty, we ask that you avoid using four space
characters (‘II0) as a resource type.

For example, if the template is going to describe your custom resource of
type ‘SLAG’, you should type the word “SLAG” into the name field of the
dialog. Click in the Create button to create the new ‘TMPL’. Resorcerer
asks the Template Editor to create a new empty template, which it displays
for you in an editing dialog window.

Note: ‘TMPL’ resources have a structure similar to standard ‘STR#’

(string list) resources, and in fact the same Editor edits both. The
list-based interface is almost identical.

387

REsSORCERER UseErR MANUAL

388

UsiINGg THE TEMPLATE EDITOR

Every template (‘'TMPL’) resource is nothing but a list of fields, where each
field consists of two parts: a four-character code, called the field type, and a
Pascal string, called the field label. The label is a string that usually
contains a readable description of the field's purpose. The Data Editor will
use the label to identify the field for you.

When the Template Editor opens a

TMPL 401 “acur” from Templates.rsr

template, it creates a standard list s T s =
with one field per entry, arranged 2) FWRD" eeda “frame” couner m
vertically. Each list entry displays, 4 “RSID’ TURS’ resource D

from left to right, the index of the S st e o,
field into the resource (counting from —h =
1); the field type in boldface and ([vew J__tor J[concer)

surrounded by single quotes; and
finally the value of the field’s label string. Fields are indented to show the
various nesting levels.

The small triangular handles on either side of the list area in the editing
dialog show you the position of the list insertion caret. If there is no
currently selected field in the list, the caret will be blinking a horizontal line
at the position in the list where any insertion or pasting of fields will occur.
If there is at least one field selected, the horizontal line will not be blinking;
the caret position, however, remains visible via the triangular handles on
either side of the list.

To position the list insertion caret, click on either triangular handle and
drag it up or down until the horizontal caret is between the two list entries
where you want to insert a new entry. If you drag the handle above or below
the top or bottom of the list, the field list will automatically scroll.

A grow box in the lower right corner of the list lets you grow the list to any
convenient size (the dialog window that contains the list will grow to
accommodate the new list size), and the ZoomBox in the window's upper
right corner grows or shrinks the window to the size of the screen on which it
is found.

Below the list are three buttons: New, Edit, and Cancel.
The New button creates a new field, inserts it between the two list entries

that are separated by the list insertion caret, and opens the new field for
editing. You can also double-click on a list insertion caret handle to create a

THE TEMPLATE EDITOR

new field at the position of the caret.

The Edit button opens an editing dialog window for each selected field in the
template.

The Cancel button throws away any changes you've made to the template
resource since you opened it, and closes its editing dialog window.

You can select any possible set of fields from the template field list. You can
cut, copy, or clear the current selection when you choose Cut, Copy, or
Clear from the Edit menu (tapping the Delete key also Clears the current
selection); the fields in the current selection can be rearranged without
cutting and pasting when you choose Reorder Fields from the Template
menu; and you can open all selected fields for editing by clicking on the Edit
button.

To select all fields within a given indentation level, use the Select All
command in the Edit menu. If all selected fields are already at the same
indentation level, then the command will select all fields at the previous
indentation level. This lets you use Select All to check for balanced fields
that begin and end indentation levels.

Sorcery: 3 . (period) is the keyboard equivalent of the Cancel button.
36 A is the keyboard equivalent of the Select All command.
The Shift key extends the current selection of the list.
The 3 key toggles the selection status of any field you click on.

ADDING A NEwW TEMPLATE OR RESOURCE FIELD

CI iCk in the NeW bUtton to add # 1 New Field 4 for TMPL 128 "MBAR ” from Resources.rsrc i

a new field _Nherever_ the Type: | I
horizontal list caret is String:
positioned. The Editor opens an o

editing dialog for the new field.
The field type is initially set to -
222?" with an empty label string. renothe

Sorcery: 36N is the keyboard equivalent of the New button.
Double-clicking on a triangular handle on either side of
the list insertion caret creates a new field at that position.
You can hold the Option key down while creating new
fields to suppress opening their editing dialog windows.

389

REsSORCERER UseErR MANUAL

If you have existing custom resources that have been created with a
template, your addition of a new data field type to the template renders
it incapable of accurately opening the old resources, whose data has not
yet changed to the new format.

Resorcerer supports special insertion and deletion field types that can
alleviate the above problem. The insertion fields let you to insert data
at any position in an existing resource when you open it, leaving the
data there when you close the resource. The deletion fields let you
delete existing data at any position when you close the resource.

Each of these field types begins with a ‘+’ for insertion, or a -’ for

deletion. For more on their operation, see the next section, “Template
Field Types”, and the tutorial section at the end of the chapter.

EbiTinGg AN ExIsTING TEMPLATE FIELD

Once a field has been defined in #1% Field 3 from TMPL 128 “MBAR " from Resources.rsrc

a ‘TMPL’ resource, you can Type: | Decimal Word |
select it by clicking on it and String:

then edit it by clicking in the A
Edit button, or by double-
clicking directly on the field.
The Editor opens a field editing Length: 15
dialog window to let you change
either the field type or its label
string.

The field editing dialog displays a small editing text box in which you
should enter a four-character field type (described below); a larger
editing box in which you should enter a descriptive label string; and a
popup menu next to the field type that lets you choose from all the legal
four-character field types that Resorcerer’'s Data Editor currently
supports. Since there are some 120 field types, the popup menu lets you
see and choose from the various types so you don't have to remember
them all. Each entry in the menu gives a written description of the field
type, followed by the four-character type code. Related entries in the
menu are grouped together and separated by divider lines.

The field label string identifies the field when the Data Editor uses the
template to present your resource’s field values to you. The Data Editor
allows plenty of room for your label strings. Usually, there is no need to
abbreviate words, and full readable descriptions are encouraged.

390

THE TEMPLATE EDITOR

When you have finished entering the field type and its label, click in the
GoAway box to install the changed or new field.

Sorcery: 3 W is the key equivalent of closing and saving the field.
36 . (period) is the key equivalent of the Cancel button.

IMPORTING AND ExPORTING TEMPLATE FIELDS AS TEXT

Once you've mastered the language of template fields, you can design
your templates as text using your development system’s source code
text editor. For large and complicated data structures this will be a
much faster method of resource design. In addition, you can use the
tools of your text editor to manipulate the declarations however you
want. For example, you might want to convert a set of C #define’ sor
enum’ s into a set of template ‘CASE’ fields.

The Template Editor will cut or copy any selection of template fields.
You can paste these into your text editor and work on them there. Then
when you're done, select the fields in your text editor, copy them to the
clipboard, switch back to Resorcerer, and paste them into your template
at the position of the list insertion caret.

The Template Editor scans the text, one field per line. It ignores all
indentation (spaces and tabs) at the start of each line, so you can indent
in your text editor. The next four characters, including spaces, are
taken as the field type. Following this type there must be exactly one
character, usually a space or a tab, which is ignored. After this, all
characters to the end of the line are converted to a Pascal string and
installed as the field's label. Blank lines are ignored.

PRINTING A TEMPLATE

You can print the state of your template at any time. To do so, choose
Print...to Printer from the File menu. The Editor prints an indented
listing of the template fields in the current text style.

391

REsSORCERER UseErR MANUAL

392

TeEMPLATE FIELD TYPES

Each field in a template consists of a descriptive label string and a four-
character field type. Nearly all field types declare how the byte(s) at a
particular position in your custom resource should be interpreted. The
position of the data of any particular field is implicitly defined by the
sequence of fields that occur prior to it in the resource.

Resorcerer supports about 120 template data field types. Types that are not
compatible with Apple’s ResEdit 2.1, or which can be used in circumstances
that are legal in Resorcerer but not in ResEdit, are marked with a = .

Integer Numeric Values

DBYT
DWRD
DLNG
UBYT
UWRD
ULNG
HBYT
HWRD
HLNG

Decimal byte

Decimal word

Decimal long

Unsigned (decimal) byte
Unsigned (decimal) word
Unsigned (decimal) long
Hex byte

Hex word

Hex long

Bit and Bit Field Values

BBIT
BBnn
WBIT
WBnNn
LBIT
LBnn
BFLG
WFLG
LFLG

Byte bit (for bits labeled 7 to 0)
Unsigned decimal byte bit field

Word bit (for bits labeled 15 to 0)
Unsigned decimal word bit field

Long bit (for bits labeled 31 to 0)
Unsigned decimal long bit field

Byte boolean flag (low-order bit 0 only)
Word boolean flag (low-order bit 0 only)
Long boolean flag (low-order bit 0 only)

Floating and Fixed Point Values

REAL
DOuUB
EXTN
XT96
UNIV

Single 32-bit floating point number
Double 64-bit floating point number
Extended 80-bit floating point number
Extended 96-bit floating point number
THINK C Universal 96-bit floating point

THE TEMPLATE EDITOR

FIXD - 32-bit Fixed point number (16:16)
FRAC - 32-bit Fract number (2:30)

SFRC - 16-bit SmallFract number (0:16)
FWID - 16-bit font width number (4:12)

Miscellaneous Types

RSID - Resource ID (signed decimal word) reference
BOOL Boolean word (user-configuarable True or False)
CHAR Single byte character

TNAM Four-character OS or resource type name

DATE - Long system date/time

MDAT - Automatically set modification date

PNT - QuickDraw Point

RECT QuickDraw Rectangle

COLR - A Color QuickDraw RGB Triplet

CODE - Code dump for disassembling rest of resource

Character String Values

PSTR Pascal string

ESTR Pascal string, even-padded

PPST - Pascal string, even-padded, pad-included

OSTR Pascal string, odd-padded

CSTR C string

ECST C string, even-padded

OCSsT C string, odd-padded

BSTR - Byte length-encoded string (same as PSTR)

WSTR Word length-encoded string

LSTR Long length-encoded string

TXTS - Sized text dump

Pnmm - Pascal string in fixed-length field of $nmm bytes

Cnmm C string in fixed-length field of Snmm bytes

Tnmm - Text in fixed-length field of $nmm bytes
Labeling

DVDR - Divider line and/or section label

Lists of Repeated Items

OCNT - Word containing number of subsequent list items
BCNT - Byte containing number of subsequent list items
LCNT - Long containing number of subsequent list items
ZCNT - Word containing 0-based count of list items

393

REsSORCERER UseErR MANUAL

LZCT
FCNT
LSTC
LSTB
LSTS
LSTZ
LSTE
SELF

Alignment

AWRD
ALNG
ALO8
AL16

Long containing 0-based count of list items
Fixed count array, count in label string

Start of counted list item

Begin non-counted list item

Start of sized list

Begin list of items ending in zero byte

List item end

Entire item is recursive instance of this template

Align next field on word boundary (uneditable)
Align next field on long boundary (uneditable)
Align next field on 8-byte boundary (uneditable)
Align next field on 16-byte boundary (uneditable)

Automatically Set Skip Offset and Sizeof Values

BSKP
SKIP
LSKP
BSIZ
WSIZ
LSIZ
SKPE

Key Values for Variant

KBYT
KWRD
KLNG
KUBT
KUWD
KULG
KHBT
KHWD
KHLG
KCHR
KTYP
KRID

Offset to SKPE, stored in a byte
Offset to SKPE, stored in a word
Offset to SKPE, stored in a long

Size of following data, stored in a byte
Size of following data, stored in a word
Size of following data, stored in a long
End of skip or sizeof

Items

Signed decimal byte key
Signed decimal word key
Signed decimal long key
Unsigned decimal byte key
Unsigned decimal word key
Unsigned decimal long key
Hex byte key

Hex word key

Hex long key

Single character key
4-character type key

Key off of resource 1D, not data

Symbolic Constant Definition

CASE

394

Symbolic or default value for previous data field

THE TEMPLATE EDITOR

Keyed Items

KEYB
KEYE

Begin keyed item for associated key CASE
End of keyed item

Data Filter for Pre- and Post-Processing

FLTR

Pre- and post-process data with compiled filter

Hex Data (Unknown Format)

BHEX
WHEX
LHEX
BSHX
WSHX
LSHX
Hnmm
HEXS
HEXD

Byte byte count followed by that many bytes
Word byte count followed by that many bytes
Long byte count followed by that many bytes

Byte byte count followed by that many bytes - 1
Word byte count followed by that many bytes - 2
Long byte count followed by that many bytes - 4
Hex data in fixed-length field of $nmm bytes

Hex dump to next skip or sizeof end

All data to end of resource or unknown keyed item

Structure Changes for Existing Resources

+BYT
+WRD
+LNG
+nmm
+PST
+EST
+CST
-BYT
-WRD
-LNG
-nmm
-PST
-EST
-CST

Filler (uneditable)

FBYT
FWRD
FLNG
Fnmm

Insert a byte when opening

Insert a word when opening

Insert a long when opening

Insert Snmm bytes when opening

Insert an empty Pascal string when opening
Insert an empty even-padded Pascal string
Insert an empty C string when opening
Delete a byte when closing

Delete a word when closing

Delete a long when closing

Delete $nmm bytes when closing

Delete a Pascal string when closing

Delete an even-padded Pascal string when closing
Delete a C string when closing.

Filler byte
Filler word
Filler long
$nmm bytes of filler

395

REsSORCERER UseErR MANUAL

EveN anD Obb ByTE BOUNDARIES

As far as the Data Editor is concerned, the bytes in a field can begin at
any byte offset in the resource, regardless of whether that offset is even
or odd. Most compilers and hardware, however, require a variety of
objects (e.g. long words, floats, structures, etc.) to begin on even or
sometimes longword memory addresses. In general, it is a good idea to
attempt to make all fields start at an even offset into the resource data
to avoid problems.

When your application reads a resource into memory, the Mac's
Resource Manager guarantees that the 0'th byte of the resource falls on
an even (in fact, a multiple of 16 bytes) address in main memory. Thus
it is sufficient to look only at the even or odd parity of any field's offset
from the beginning of its resource data to know whether the start of
that field’s data will fall on an even or odd address.

Note: You can see the current field offsets when you edit your
custom resource. They are made visible when you choose
the Show Field Offsets command from the Data Editor’s
Field menu. They are normally shown in hexadecimal,
but the Decimal Offsets command converts them to
decimal.

396

THE TEMPLATE EDITOR

ExpLANATIONS OF FIELD TYPES

The Data Editor supports the following field types, listed alphabetically
by type. These types are all found in the popup menu of the Template
Editor’s field editing window.

Note: Types marked here and in the popup menu with a = are not
supported by Apple’s old ResEdit program.

+BYT < Insert a Byte when Opening
+WRD < Insert a Word when Opening
+LNG <= Insert a Long when Opening

Each of these fields inserts one (+BYT), two (+WRD), or four (+LNG)
zero-valued bytes at the position in the resource the field represents
in the template. The newly inserted data is marked to show the
change.

+PST < Insert a Pascal String
+CST < Inserta C String

Each of these fields inserts an empty Pascal (+PST) or C (+CST)
string at the position in the resource that the field represents in the
template. In both cases, this is a single zero-valued byte. The newly
inserted empty string is marked to show the change.

+EST < Insert an Even-Padded Pascal String

This inserts an empty Pascal (or C) string at the position in the
resource that the field represents in the template. The data inserted
is a single zero-valued byte followed by either zero or one pad bytes
to ensure that the following field begins on an even byte offset. The
newly inserted empty string is marked to show the change.

+nmm < Insert Fixed-Length Block of Bytes

This inserts $nmm zero-valued bytes at the position in the resource
that the field represents in the template. The length of the block is
$nmm bytes, where the first hex digit, n, is in the range ‘0’ to '9’, and
the following two hex digits, mm, are each in the range ‘0’ to ‘F’
(upper case only). The field type for the minimum insertion block
size is +000, which inserts nothing; the maximum is +9FF, or 2559
(decimal) bytes.

397

REsSORCERER UseErR MANUAL

-BYT < Delete a Byte when Closing
-WRD < Delete a Word when Closing
-LNG = Delete a Long when Closing

Each of these fields deletes one (-BYT), two (-WRD), or four (-LNG)
bytes at the position in the resource the field represents in the
template. The data to be deleted is parsed when you open the
resource with Data Editor, and is marked to show the deletion that
will occur when you save the resource.

-PST « Delete a Pascal String

The -PST field marks for deletion a Pascal string at the position in
the resource that the field represents in the template. The length of
the data deleted is 1 + n bytes, where n is the unsigned value,
ranging from 0 to 255, of the byte at the current parsing offset.

-CST = Delete a C String

The -CST field marks for deletion a C string at the position in the

resource that the field represents in the template. The length of the
data deleted is 1 + n bytes, where n is the number of non-null bytes
extending from the current byte parsing offset to the first null byte.

-EST e Delete an Even-Padded Pascal String

The -EST field marks for deletion a padded Pascal string at the
position in the resource that the field represents in the template.
The length of the data deleted is 1 + n + pad bytes, where n is the
unsigned value, ranging from 0 to 255, of the byte at the current
parsing offset, and pad is either 0 or 1 byte, depending on whether
the following field starts at an even offset or not.

-nmm < Delete a Fixed-Length Block of Bytes

The -nmm field marks for deletion $nmm bytes at the position in the
resource that the field represents in the template. The length of the
block is taken to $nmm bytes, where the first hex digit, n, is in the
range ‘0’ to ‘9, and the following two hex digits, mm, are each in the
range ‘0’ to ‘F’ (upper case only). The field type for the minimum
deletion block size is +000, which deletes nothing; the maximum is
+9FF, or 2559 (decimal) bytes. The bytes are deleted when you save
the resource.

398

THE TEMPLATE EDITOR

AWRD - Align Next Field on Word Boundary
ALNG - Align Next Field on Long Boundary
ALO8 <= Align next field on 8-byte Boundary

AL16 = Align next field on 16-byte Boundary

Each of these fields appends 0 or more null pad bytes after the
previous field, in order to guarantee that the next field begins at an
offset into the resource that is divisible by 2 (AWRD), 4 (ALNG), 8
(ALO08), or 16 (AL16). The number of pad bytes added is whatever it
takes to guarantee that the following field always starts with the
proper alignment. You will usually want to use one of these fields
after a variable-length field. These fields are not editable.

BBIT - Byte Bit
BBnn < Byte Bit Field

The BBIT and BBnn fields occur in groups specifying individual bits
or groups of bits within a single byte of data (8 bits). The BBnn field
declares a bit field nn bits wide (01 <= nn <= 08) anywhere within
the byte, as long as the field does not cross the byte’'s boundary. As
BBIT and BBnn fields are encountered in order, they specify bits
beginning with the most significant high-order bit of the byte. When
the Data Editor displays each bit or bit field, the field is labeled with
the bit number or numbers (inclusive) that define the bit field. The
value of a single bit is shown as either “On” if the bit is set, or “Off” if
the bit is clear. The value of a bit field is numeric. You can change
the value of single bits using the Data Editor's Toggle Value menu
command.

BCNT < Byte Count of List Items

The BCNT field is 1 byte long and contains an unsigned integer, n, in
the range from 0 to 255. This number represents how many
repeated items will be found in the first counted list that occurs
anywhere after the BCNT field at the same item nesting level.
Counted lists begin with an LSTC field. As you add or delete items
from the list, the BCNT field is automatically updated for you; it is
otherwise uneditable.

The label for this field should be the plural name of the items to be
counted, such as “Networks” or “Options”. For best results, do not
use labels that start out "Number of” or “# of” (such as “Number of
networks” or “# of Options”) since the Data Editor copies the value of
the label as a header string for each item in the displayed list.

399

REsSORCERER UseErR MANUAL

BFLG - Byte Flag

The BFLG field displays the value of the low-order bit O of a byte.
The other bits are inaccessible and set to 0. This field is analogous to
a C language char variable that you are using as a boolean flag.

You can quickly change the flag's value using the Data Editor’s
Toggle Value menu command.

BHEX = Byte-Length Hex Data

The BHEX field is a variable length field containing a single byte
followed by a block of data of unknown format. The first byte of the
field contains the length, n, of the block, and the following n bytes
are the pure hex data, where n is in the range 0 to 255. The initial
byte’s value does not include its own length. This field can start and
end at any byte offset, and is always 1+n bytes in length. Itis
usually a good idea to follow BHEX fields with an AWRD or ALNG
alignment field. The initial length byte is not displayed but is
computed automatically.

BOOL - Boolean

The BOOL field is 2 bytes long and is used to encode a Boolean
value, which is displayed as “TRUE?" if either byte is non-zero, and
“FALSE” if both bytes have 0 in them. You can change the value of a
BOOL field using the Data Editor's Toggle Value menu command,
as well as by opening its value dialog. If the value is set to TRUE,
both bytes are written out with the default value $0100. This field
can begin at any byte offset in the resource; however, even offsets are
strongly recommended.

Note: If your development language requires Boolean fields to
be in a different format from the above, you can change
the value to any bit pattern you want by editing
Resorcerer’s ‘BOOL’ 128 resource, which contains the bit
pattern the editor uses to represent TRUE when writing
BOOL fields back out.

BSHX « Byte-Skip Hex Data

The BSHX field is a variable length field containing a single byte
followed by a block of n bytes of data of unknown format. The first
byte of the field contains the value, 1+n, which is the size of the
entire field, including the initial byte. nis in the range 1 to 255.

400

THE TEMPLATE EDITOR

This field can start and end at any byte offset, and is always 1+n
bytes in length. It is usually a good idea to follow BSHX fields with
an AWRD or ALNG alignment field. The initial length byte is not
displayed but is computed automatically.

BSIZ - Byte Sizeof

The BSIZ field is 1 byte long, and contains an unsigned decimal
value between 0 and 255 that represents the number of bytes in the
following data, up to a matching SKPE field. Typically, intervening
fields contain complex structures of variable size or unknown format.
The byte count stored in the BSIZ field does not include its own size.

BSIZ...SKPE pairs may not be nested except as part of the standard
nesting of repeated list or keyed items. BSIZ fields are not editable,
but their values are automatically computed for you. Their values
are only shown when you have the Show Offsets option set in the
Data Editor.

We discourage the use of BSIZ fields in favor of BSKP (or better yet,
LSKP) fields, which are used more often in many Apple resources.

BSKP < Byte Skip Offset

The BSKP field is 1 byte long, and contains an unsigned decimal
value between 1 and 255 that represents the number of bytes,
including the BSKP’s byte, to skip over to get to a matching SKPE
field. Typically, intervening fields contain complex structures of
variable size; skip offsets allow for fast scanning algorithms when
your resource data has complex variable sized items or fields in it
that you need to skip over quickly.

BSKP...SKPE pairs may not be nested except as part of the standard
nesting of repeated list or keyed items. BSKP fields are not editable,
but are automatically set for you. Their values are only shown when
you have the Show Offsets option set in the Data Editor.

BSTR <« Byte Length Text String

The BSTR field is a variable-length field for displaying a string of
text. This field is the same as the PSTR field, but is included here
for completeness. The first byte of the field contains the length, n, of
the string, and the following n bytes are the characters in the string,
where n is in the range 0 to 255. If there are an even number of
characters in the string, the total field length will be odd (if the

401

REsSORCERER UseErR MANUAL

402

BSTR field begins on an even byte boundary, and has an odd humber
of bytes in it, the field after it will begin on an odd boundary). This
field can start and end at any byte offset, and is always at least 1
byte in length.

The Data Editor displays non-empty strings using double quotes.

CASE = Symbolic and/or Default Value for Previous Data Field

The CASE field is a special field type that lets you define symbolic
values for a previous non-CASE field in the ‘TMPL’ resource. Any
number of CASE fields can appear together in sequence, with all of
them refering to the previous non-CASE field in the TMPL resource.
When the Template Editor displays CASE fields, they are indented
so that you can easily pick out the previous field to which they refer.

The label string for a CASE field defines the symbolic value using
the simple syntax

<name> = <valuestring>
where <name> is any non-empty sequence of ASCII characters up to
but not including the ‘=" character, followed by <valuestring> which
consists of everything past the first ‘=" to the end of the label string.

When the Data Editor displays or opens a field that has symbolic
cases associated with it, all symbolic value names are collected and
used to create a popup menu from which you can choose various
values to be installed in the field. This menu is available at all times
in the Data Editor’s field list as a small popup box to the left of the
field label; it is also installed in the field’s editing dialog when you
open the field.

Sorcery: When a field has exactly one CASE in its list of symbols,
and its value is the same as that case, the Data Editor
suppresses the popup menu in the field list, since there is
nothing useful to do with it. To change the value of the
field to something other than a defined CASE, you will
have to open it for editing.

Whenever the Data Editor creates new resource data, either as the
resource is created or when you create a new item in a list or new
keyed item, the field must be set to some default value. Normally
this is 0 or other value signifying empty or missing. However, if the
data field has at least one CASE field, the value of the first CASE is
taken as the default. This lets you avoid situations where the
Editor's default value may be illegal (consider, for example, a

THE TEMPLATE EDITOR

numeric scaling factor field that should never be 0). Thus, your most
common symbolic value for a field should be its first CASE.

Resources which begin with a version field are prime candidates for
having a single CASE declaring the value of the latest version.

CHAR - Single Character

The CHAR field is 1 byte long and encodes a single ASCII character
that the Data Editor displays surrounded by single quotes. If the
character value is less than $20, or equal to $7F, the Editor will
display its value in hex. You can enter any character’s value in its
value-editing dialog as either a single character, or as a 3-character
string starting with a ‘$’ and followed by exactly two hex digits.

CHAR fields in new resource data are initially set to single blanks.
CODE - Code Dump

The CODE field represents 0 or more bytes of trailing data in the
resource that should be disassembled as 68040 machine instructions.
The Data Editor displays only the first disassembled instruction, if
any, until you open the field for editing.

COLR < Color RGB Triplet

The COLR field is 6 bytes long and encodes a standard QuickDraw
RGBColor structure (as documented in Inside Macintosh, volume 5,
chapter 4) consisting of three unsigned 2-byte words, one for each
primary component. The Data Editor displays the value of the
COLR field as

(r,g,b) = (0,65535,23434) (or whatever the numbers are)
so that there is no ambiguity as to which component is which. It also
displays a small swatch of the color next to the numeric components.
Each component number must be in the range 0 to 65535. This field
can start at any byte boundary in the resource; however, even
boundaries are strongly recommended.

When you open the value of a COLR field, you can set the color
component values directly, or click on the Set button to use the
Standard Color Picker.

CSTR - C String

The CSTR field is a variable length field containing a C string, an
403

REsSORCERER UseErR MANUAL

arbitrarily long sequence of non-null ASCII characters followed by a
null (0 byte). This field can start and end at any byte offset, and is
always at least 1 byte in length. If there are an even number of
characters in the string, the total length of the field will be odd, and
vice-versa.

Cnmm - Fixed Length C String

The Cnmm field is a fixed-length block of bytes in which to place a C
string, beginning at byte 0 of the block. The length of the block is
taken to be $nmm bytes, where the first hex digit, n, is in the range
‘0’ to ‘9", and the following 2 hex digits, mm, are each in the range ‘0’
to ‘F' (upper case only). This field can begin at any byte offset. The
minimum block size for a C string is C001, since at least one null
byte is required for the empty C string. The maximum block size
encodable using this scheme is CO9FF, or 2559 (decimal) bytes,
including the trailing null byte. Bytes in the field beyond the logical
end of the C string are set to 0.

DATE < System Date and Time

The DATE field is 4 bytes long and holds a system date/time
number, which is a count of the number of seconds since Jan. 1,
1904. The Data Editor displays values of the field as a readable
string indicating the date and time the value represents. This field
can start at any byte offset in the resource; however, even offsets are
strongly recommended.

When the Data Editor creates a DATE field in a new resource, it fills
the field in with the value of the current date and time.

DBYT - Decimal Byte

The DBYT field is 1 byte long and encodes a signed decimal number
in the range -128 to 127. This field’s value-editing dialog will also
accept hex input preceded by a ‘$'.

DLNG - Decimal Long

The DLNG field is 4 bytes long and encodes a signed decimal number
in the range -2,147,483,648 to 2,147,483,647. The field can begin at
any byte offset in the resource; however, even offsets are strongly
recommended. This field’'s value-editing dialog will also accept hex
input preceded by a ‘$'.

404

THE TEMPLATE EDITOR

DOUB < Double Precision 64-bit Floating Point Number

The DOUB field is 8 bytes long and encodes a double precision

floating point number. In THINK C, such a number is declared as a
short double

You can append a formatting command to the end of this field’s label
string. The syntax of the command is similar to a standard C
language printf floating point escape sequence: %n. nis the
number of significant digits the Data Editor will use to display the
floating point value; if the field label string does not exist, or is
illegal, the Editor uses a default value.

DVDR - Divider Comment Line and/or Section Label

The DVDR field does not represent data. It is simply a way of
visually separating and marking sections of related data within a
resource or item. The field label is drawn on the right side of the
Data Editor’s list to better make the label stand out. DVDR fields
are helpful when editing complex resources, such as MacApp ‘view's.

DWRD - Decimal Word

The DWRD field is 2 bytes long and encodes a signed decimal
number in the range -32768 to 32767. The field can begin at any
byte offset in the resource; however, even offsets are strongly
recommended. This field’'s value-editing dialog will also accept hex
input preceded by a ‘$'.

ECST - Even C String

The ECST field is a variable length field containing a C string, an
arbitrarily long sequence of non-null ASCII characters followed by a
null (0 byte). This field can start and end at any byte offset, and is
always at least 2 bytes in length. If the length of the string is found
to be even, an extra pad (zero) byte is appended after the
terminating null byte to ensure that the entire field uses up an even
number of bytes (if an ECST field begins at an odd byte offset, the
following field will also).

ESTR - Even Pascal String

The ESTR field is a variable length field containing a Pascal string.
The first byte of the field contains the length, n, of the string, and

405

REsSORCERER UseErR MANUAL

the following n bytes are the characters in the string, where nis in
the range 0 to 255. If n is even (thereby making the total field length
odd), an extra zero pad byte is appended to ensure that the total field
length is even (if an ESTR field begins at an odd byte offset, the
following field will also). This field can start and end at any byte
offset, and is always at least 2 bytes in length.

The ESTR field is equivalent to a PSTR field immediately followed
by an an AWRD field.

EXTN < Extended Precision 80-bit Floating Point Number

The EXTN field is 10 bytes long and encodes a SANE extended
precision 80-bit floating point number. In THINK C, such a number
is declared as either extended or double , depending on the
compiler settings. This field is the same as the XT80 field.

You can append a formatting command to the end of this field’s label
string. The syntax of the command is similar to a standard C
language printf floating point escape sequence: %n. n is the
number of significant digits the Data Editor will use to display the
floating point value; if the field label string does not exist, or is
illegal, the Editor uses a default value.

FBYT - Filler Byte

The FBYT field is 1 byte long and is used to indicate an unused or
reserved byte in the resource data. Its value is displayed in the
range -128 to 127, however FBYT fields are not editable.

FCNT e Fixed Counted List

The FCNT field does not declare or parse any actual data. Itis
analogous to the other item count fields, such as OCNT, BCNT,
LCNT etc. It must be followed somewhere at the same indentation
level by the LSTC item record start field. The first number in the
field label string, either decimal or hex, is used as the list count to
parse that many items in the data. The count can be any non-
negative 32-bit number. Since the count is embedded in the
template, not the data, the list size is fixed.

During editing, the Data Editor does not enforce the array length, so
that you can cut and paste items to rearrange them. The FCNT field
is automatically updated the same as the other field types if you do
change the array length, but its displayed value is not added to the

406

THE TEMPLATE EDITOR

resource data when you close the resource. When you attempt to
build the resource data during a save or duplication, the Editor
warns you about any discrepancy between the current number of
repeated items and the declared number. If you continue to build
the resource data with a different number of items in the list, the
data will no longer be described by your current template until you
change the item count in the FCNT field's label to match.

The label for this field should be the plural name of the items to be
counted, such as “Networks” or “Options”. For best results, do not
use labels that start out "Number of” or “# of” (such as “Number of
networks” or “# of Options”) since the Data Editor copies the value of
the label as a header string for each item in the displayed list.

FIXD « Fixed Point Number

The FIXD field is 4 bytes long and encodes a standard Fixed

number in the range [-32768.0, 32768.0). The high-order word
contains the integer part; the low-order word contains the fractional
part. This field can start at any byte offset in the resource; however,
even offsets are strongly recommended.

FLNG - Filler Long

The FLNG field is 4 bytes long and is used to indicate an unused or
reserved long in the resource data. Its value is displayed in the
range -2,147,483,648 to 2,147,483,647. FLNG fields are not editable.
The field can begin at any byte offset in the resource; however, even
offsets are strongly recommended.

FLTR < This is a Filtered Template

The FLTR field declares no data, but should appear at the start of
any filtered template. Its presence tells the Data Editor that the
resource data to be edited should be filtered on input and output to
convert the data into and out of the form that the filtered template
fields in the rest of the template describe. The field label serves to
remind you that what you are editing does not have the same
structure as what you might otherwise expect. Filters are explained
more fully in the “Designing Filters” section later in this chapter.

FRAC < Fract Number

The FRAC field is 4 bytes long and encodes a Macintosh Fract
number in the range [-2.0, 2.0). The high-order 2 bits of the field are

407

REsSORCERER UseErR MANUAL

408

the signed integer part; the low-order 30 bits are the high-precision
fractional part. This field can start at any byte offset in the resource;
however, even offsets are strongly recommended.

FWID = Font Width Fixed Point Number

The FWID field is 2 bytes long and encodes a short fixed point
number in the range [-8.0, 8.0). The upper 4 bits of the field encode
the signed integer portion of the number; the lower 12 bits the
fractional portion. This field can start at any byte offset in the
resource; however, even offsets are strongly recommended.

FWRD - Filler Word

The FWRD field is 2 bytes long and is used to indicate an unused or
reserved word in the resource data. Its value is displayed in the
range -32768 to 32767. FWRD fields are not editable. The field can
begin at any byte offset in the resource; however, even offsets are
strongly recommended.

Fnmm - Filler Block

The Fnmm field is a fixed-length block of uneditable filler bytes. The
length of the block is taken to be $nmm bytes, where the first hex
digit, n, is in the range ‘0’ to ‘9", and the following 2 hex digits, mm,
are each in the range ‘0’ to ‘F' (upper case only). This field can begin
at any byte offset. The minimum block size is the empty block, FOOO.
The maximum block size encodable using this scheme is FOFF, or
2559 (decimal) bytes.

HBYT - Hex Byte

The HBYT field is 1 byte long and encodes an unsigned hexadecimal
number in the range $00 - $FF. When editing a value of this type,
an initial ‘'$’ is optional and the hex digits can be in either upper or
lower case.

HEXD < Hex Dump of Unknown Data

The HEXD field represents 0 or more bytes of trailing data in the
resource that for whatever reasons cannot be encoded using the
other field types (typically, the resource is allowed to have optional
data appended to it after the last required field).

The HEXD field is also used as the sole item in the last keyed item of

THE TEMPLATE EDITOR

a keyed item list that is surrounded by a skip offset pair. For more
on this, see the explanations for keyed items (KEYB, KEYE, etc.).

HEXS e Sized Hex Dump

The HEXS field consists of 0 or more bytes of arbitrary data to be
displayed as hex. The HEXS field must explicitly or implicitly be
followed by a SKPE field, so that the parser can know when to stop
parsing data and start parsing subsequent fields. The amount of
data parsed is equal to the value of the previous matching skip offset
(BSKP, WSKP, or LSKP) or sizeof (BS1Z, WSIZ, or LSIZ) in the
resource, minus the lengths of any intermediate fields.

The HEXS field lets you do a local dump of a variable length of data
up to a given length recorded earlier in the resource. For example, if
in the sequence “WSIZ, REAL, REAL, REAL, HEXS, SKPE” the
value of the WSIZ field were 32, then the HEXS field would be

32 - 3*4 bytes of text, since REAL fields are 4 bytes long.

HLNG - Hex Long

The HLNG field is 4 bytes long and encodes an unsigned
hexadecimal number in the range $00000000 - $FFFFFFFF. When
editing a value of this type, an initial ‘$' is optional and the hex
digits can be in either upper or lower case. The field can begin at
any byte offset in the resource; however, even offsets are strongly
recommended.

HWRD - Hex Word

The HWRD field is 2 bytes long and encodes an unsigned
hexadecimal number in the range $0000 - $FFFF. When editing a
value of this type, an initial ‘$’ is optional and the hex digits can be
in either upper or lower case. The field can begin at any byte offset
in the resource; however, even offsets are strongly recommended.

Hnmm - Fixed Length Hex Data

The Hnmm field is a fixed length block of bytes in which to place
pure data, beginning at byte 0 of the block. The data is editable as
hex only. The length of the block is taken to be $nmm bytes, where
the first hex digit, n, is in the range ‘0’ to '9’, and the following 2 hex
digits, mm, are each in the range ‘0’ to ‘F’ (upper case only). This
field can begin at any byte offset. The minimum block size is H000,
that is, the empty block, which allocates 0 bytes of storage. The

409

REsSORCERER UseErR MANUAL

maximum block size encodable using this scheme is HOFF, or 2559
(decimal) bytes. Bytes in the field beyond the logical end of the hex
data you enter into it are set to 0.

KBYT = Byte Key

The KBYT field contains a 1-byte signed decimal number in the
range -128 to 127. The field declares the beginning of a keyed item
list in the template, as discussed more fully in the following section
on KEYB and KEYE fields.

Newly created key fields take on the value of their first CASE.
KCHR < Character Key

The KCHR field contains a 1-byte character, which, like the CHAR
field, can be specified by either a single printable character, or by a
hex pair preceded by a '$’ sign. The field can begin at any offset in

the resource data. The field declares the beginning of a keyed item
list in the template, as discussed more fully in the following section
on KEYB and KEYE fields.

Newly created key fields take on the value of their first CASE.

KEYB <= Begin Keyed Item
KEYE < End of Keyed Item

Key (KBYT, KWRD, KLNG, KCHR, and KTYP) fields each declare
the start of a keyed item list in the TMPL. When scanning your
resource data, the value of any key field determines which of several
formats a section of subsequent data in the resource is about to be
found in. Each of these possible formats is kept as an item in the
key’s item list. The Data Editor uses the key field value to
determine which keyed item format to use to parse and display the
data. If you are used to creating Rez template source code, you will
recognize this as the equivalent of a Rez switch statement, where
each keyed item represents the format of a particular case .

A keyed item list consists of the key field followed by 1 or more keyed
items, where each keyed item begins with the KEYB field and ends
with a matching KEYE field. The fields declared between the KEYB
and KEYE fields can be any sequence of 0 or more template fields
that describes the structure of the keyed item (unlike items in
repeated lists, keyed items can be empty). The data fields
comprising the item can include nested key fields with their own

410

THE TEMPLATE EDITOR

item lists, or nested lists of repeated items, etc., up to some
maximum nesting level. There can be no fields declared between the
KEYE field of an item and the KEYB field of the next item in the
list; any non-KEYB field following a KEYE field signals the end of
the keyed item list.

In addition to the list of keyed items, a key field must have one or
more symbolic CASE fields, one for each key value to be associated
with a particular KEYB field in the keyed item list. If there are N
CASE:s for the key, then there must be N keyed items (that is,
KEYB...KEYE pairs) following the key’'s last CASE field (for a
clearer idea of how this works, see the Examples section later in this
chapter).

The linkage between cases and keyed items is done by indexing into
the list of alternate formats. That is, the i'th CASE is associated
with the i'th KEYB in the list. For future compatibilty, however, the
label of each KEYB field should be an exact copy of the <valuestring>
of its corresponding CASE. You will want to do this anyway to help
identify each keyed item.

When new resource data is created, the first CASE in a key’s list is
used as the value assigned to the key field, and the keyed item
associated with the first CASE is used as the new keyed item.

For a standard keyed item list, it is illegal for the value of the key
(KBYT, KWRD, KLNG, KCHR, KTYP, ...) field as found in the
resource data to be anything other than one of the values
represented in the key’s list of CASEs. The Data Editor won't let you
change the field value to anything other than one of the values in its
list of CASESs; however, if some other value is found during the
opening of the resource, the Editor will complain and be unable to
continue, since it cannot identify the correct format that the data
following the unknown key is about to be found in.

However, if you design your resource so that keyed item lists are
surrounded by a skip offset pair of fields (e.g. SKIP...SKPE), then the
Editor can find the end of the keyed item even though the alternate
format and its unknown key are not represented in the keyed item
list. To do this, there must be one extra keyed item (that is, a
KEYB...KEYE pair) appended to the N keyed items that correspond
to the N CASEs of the key. This final extra keyed item should have
between the KEYB and KEYE fields exactly one HEXD field, which
represents the unknown or default format.

411

REsSORCERER UseErR MANUAL

KHBT < Hex Byte Key

The KHBT field contains a 1-byte unsigned hex number in the range
$00 to $FF. The field declares the beginning of a keyed item list in
the template, as discussed in the section on KEYB and KEYE fields.

Newly created key fields take on the value of their first CASE.

KHLG < Hex Long Key

The KHLG field contains a 4-byte unsigned hex number in the range
$00000000 to $FFFFFFFF. The field can begin at any byte offset in
the resource; however, even offsets are strongly recommended. The
field declares the beginning of a keyed item list in the template, as
discussed in the section on KEYB and KEYE fields.

Newly created key fields take on the value of their first CASE.

KHWD < Hex Word Key

The KHWD field contains a 2-byte unsigned hex number in the
range $0000 to $FFFF. The field can begin at any byte offset in the
resource; however, even offsets are strongly recommended. The field
declares the beginning of a keyed item list in the template, as
discussed in the section on KEYB and KEYE fields.

Newly created key fields take on the value of their first CASE.

KLNG <= Long Key

The KLNG field contains a 4-byte signed decimal number in the
range -2,147,483,648 to 2,147,483,647. The field can begin at any
byte offset in the resource; however, even offsets are strongly
recommended. The field declares the beginning of a keyed item list
in the template, as discussed more fully in the previous section on
KEYB and KEYE fields.

Newly created key fields take on the value of their first CASE.
KTYP = Type Key
The KTYP field contains a 4-byte character type name, which, like

the TNAM field, can be specified by either the four characters
directly, or by four pairs of hex digits preceded by a ‘$’ sign. The

412

THE TEMPLATE EDITOR

field can begin at any offset in the resource data; however, even
offsets are strongly recommended. The field declares the beginning
of a keyed item list in the template, as discussed more fully in the
previous section on KEYB and KEYE fields.

Newly created key fields take on the value of their first CASE.

KUBT = Unsigned Decimal Byte Key

The KUBT field contains a 1-byte unsigned decimal number in the
range 0 to 255. The field declares the beginning of a keyed item list,
as discussed in the section on KEYB and KEYE fields.

Newly created key fields take on the value of their first CASE.

KULG = Unsigned Decimal Long Key

The KULG field contains a 4-byte unsigned decimal number in the
range 0 to 4,294,967,295. The field can begin at any byte offset in
the resource; however, even offsets are strongly recommended. The
field declares the beginning of a keyed item list in the template, as
discussed in the section on KEYB and KEYE fields.

Newly created key fields take on the value of their first CASE.

KUWD < Unsigned Decimal Word Key

The KUWD field contains a 2-byte unsigned decimal number in the
range 0 to 65,535. The field can begin at any byte offset in the
resource; however, even offsets are strongly recommended. The field
declares the beginning of a keyed item list in the template, as
discussed in the section on KEYB and KEYE fields.

Newly created key fields take on the value of their first CASE.

KWRD <« Word Key

The KWRD field contains a 2-byte signed decimal number in the
range -32768 to 32767. The field can begin at any byte offset in the
resource; however, even offsets are strongly recommended. The field
declares the beginning of a keyed item list in the template, as

discussed more fully in the previous section on KEYB and KEYE
fields.

Newly created key fields take on the value of their first CASE.
413

REsSORCERER UseErR MANUAL

LBIT = Long Bit
LBnn <« Long Bit Field

The LBIT and LBnn fields occur in groups specifying individual bits
or groups of bits within a single long word of data (32 bits). The
LBnn field declares a bit field nn bits wide (01 <= nn <= 32)
anywhere within the long word, with the proviso that the field does
not cross the long word’'s boundary. As LBIT and LBnn fields are
encountered in order, they specify bits beginning with the most
significant bit of the word. When the Data Editor displays each bit
or bit field, the field is labeled with the bit number or numbers
(inclusive) that define the bit field. The value of a single bit is shown
as either “On” if the bit is set, or “Off” if the bit is clear. The value of
a bit field is numeric. You can change the value of single bits using
the Data Editor's Toggle Value menu command. The group of 32
bits can begin at any byte offset in the resource; however, even
offsets are strongly recommended.

LCNT < Long Count of List Items

The LCNT field is 4 bytes long and contains an unsigned integer, n,
in the range from 0 to 4,294,967,295. This number represents how
many items are repeated in the first counted list beginning with a
LSTC field that occurs anywhere after the LCNT field at the same
item nesting level. As you add or delete items from the list, this field
is automatically updated for you; it is otherwise uneditable.

The label for this field should be the plural name of the items to be
counted, such as “Networks” or “Options”. For best results, do not
use labels that start out "Number of” or “# of” (such as “Number of
networks” or “# of Options”) since the Data Editor copies the value of
the label as a header string for each item in the displayed list.

LFLG = Long Flag

The LFLG field displays the value of the low-order bit 0 of a long.
The other 31 bits are inaccessible and set to 0. You can change the
flag value using the Data Editor’'s Toggle Value menu command.

LHEX = Long Count of Pure Hex Data

The LHEX field is a variable length field containing a 4-byte long
followed by a block of data of unknown format. The first 4 bytes of
the field contain the length, n, of the block, and the following n bytes

414

THE TEMPLATE EDITOR

are the pure hex data, where n is in the range 0 to 4,294,967,295.
This field can start and end at any byte offset, and is always 4+n
bytes in length. It is usually a good idea to follow LHEX fields with
an AWRD or ALNG alignment field. The initial length field is not
displayed, but is automatically computed for you.

LSHX = Long Skip Hex Data

The LSHX field is a variable length field containing a 4-byte long
followed by a block of hex data of unknown format. The first 4 bytes
of the field contain the skip offset, n+4, of the block, and the
following n bytes are the pure hex data, where n is in the range 0 to
4,294,967,291. That is, the field value includes its own size. This
field can start and end at any byte offset, and is always 4+n bytes in
length. It is usually a good idea to follow LHEX fields with an
AWRD or ALNG field. The initial skip offset is not displayed, but is
computed automatically for you.

LSIZ = Long Sizeof

The LSIZ field is 4 bytes long, and contains an unsigned decimal
value between 0 and 4,294,967,295 that represents the number of
bytes in the following data, up to a matching SKPE field. Typically,
intervening fields contain complex structures of variable size or
unknown format. The byte count stored in the LSIZ field does not
include its own size.

LSIZ...SKPE pairs may not be nested except as part of the standard
nesting of repeated list or keyed items. LSIZ fields are not editable
(their values are automatically computed for you), and their values
are only shown when you have the Show Offsets option set in the
Data Editor.

We discourage the use of LSIZ fields in favor of LSKP fields, which
are more elegant and used more often in Apple resources.

LSKP < Long Skip Offset

The LSKP field is 4 bytes long and contains an unsigned decimal
long value between 4 and 4,294,967,295, which represents the
number of bytes, including the 4 bytes of the LSKP field itself, to
skip to get to a matching SKPE field. Typically, intervening fields
contain complex structures of variable size; skip offsets allow for fast
scanning algorithms when your resource data has complex variable
sized items or fields in it that you need to skip over quickly.

415

REsSORCERER UseErR MANUAL

Although this field can occur at any byte offset in the resource, even
offsets are strongly recommended.

LSKP...SKPE pairs may not be nested except as part of the standard
nesting of repeated list or keyed items. LSKP fields are not editable,
but are automatically computed for you. Their values are only
shown when you have the Data Editor's Show Offsets option set.

LSTB - Begin a Non-Counted List Item

The LSTB field indicates the start of a series of ‘TMPL' fields that
together describe the structure of a repeatable list item in the
resource. The length of the list is not explicitly saved in the resource
data and must be determined by whatever means at runtime, such
as comparing the beginning of the list with the size of the resource.
The LSTB field itself does not represent any data in the resource. A
matching LSTE field must occur later on in the template to indicate
the end of the item description. The label string is ignored.

The only way to tell when the end of a non-counted list occurs is by
knowing beforehand what the size of the resource is. For this
reason, you cannot specify data fields after the end of a non-counted
list in your TMPL resource. Also, non-counted lists cannot
themselves be nested as an item in some other list.

LSTC - Start of Counted List Item

The LSTC field indicates the start of a set of fields that together
describe the structure of a repeatable list item. It must occur in your
template field list at some point after a OCNT, BCNT, LCNT, FCNT,
or ZCNT field occuring at the same item nesting level. The LSTC
field does not represent any data in the resource. A matching LSTE
field must occur later on in the TMPL to indicate the end of the item
description. List items can themselves contain lists or keyed items,
nested to some maximum depth. The label string is ignored.

LSTE - End of List ltem

The LSTE field signifies the end of a series of TMPL fields that
describe the structure of a repeatable list item. It must match some
previous LSTC, LSTB, or LSTZ field. There must be one LSTE field
for every nested list item description in the TMPL. The field itself
does not represent any data in the resource, unless it matches a
LSTZ field, in which case it causes a null byte to be added after the
last item in the list. The label string is ignored.

416

THE TEMPLATE EDITOR

LSTR - Long String

The LSTR field is a variable length field containing a 4-byte word
followed by a string of ASCII characters. The first 4 bytes of the
field contain the length, n, of the string, and the following n bytes
are the characters in the string, where n is in the range 0 to
4,294,967,295. This field can start and end at any byte offset, and is
always 4+n bytes in length. Note that if there are an odd number of
characters in the string, the total length will be odd (if the LSTR
field begins on an even byte boundary, and has an odd number of
bytes in it, the field after it will begin at an odd offset). It is usually
a good idea to follow LSTR fields with an AWRD or ALNG field.

The Data Editor can only edit up to 32K bytes per field.
LSTS - Begin a Sized List Item

The LSTS field indicates the start of a series of ‘TMPL’ fields that
together describe the structure of a repeatable list item. The LSTS
field itself does not represent any data in the resource. The length of
the sized list is determined by an enclosing sizeof or skip offset
(BSKP, WSKP, LSKP...SKPE) to indicate where in the resource the
first field after the last item in the list starts. This will be at the
following SKPE field at the same nesting level as the list. Before the
SKPE field a matching LSTE field must occur to indicate the end of
the item description. The label string is ignored.

LSTZ - Begin a List Item, with Final Item Followed by a 0 Byte

The LSTZ field indicates the start of a series of TMPL fields that
together describe the structure of a repeatable list item in the
resource. The length of the list is not explicitly saved in the resource
data; a byte with a 0 in it is appended after the last item in the list.
The LSTZ field itself does not represent any data in the resource. A
matching LSTE field must occur later on in the TMPL to indicate the
end of the item description. List items can themselves contain lists,
nested to some maximum depth. The label string is ignored.

This field type, originally designed to parse ‘MENU'’ resources, is
included for compatibility with ResEdit; however, its use is strongly
discouraged. If the first field of the repeatable item (that is, the
template field following this LSTZ field) has a 0 in it, your resource
parsing code may get into trouble.

417

REsSORCERER UseErR MANUAL

418

LZCT = Long Zero-based Count of List Items

The LCNT field is 4 bytes long and contains an signed integer, n, in
the range from -1 to 2,147,483,647. This number represents 1 less
than the number of repeated items in the first counted list beginning
with a LSTC field that occurs anywhere after the LZCT field at the
same item nesting level. As you add or delete items from the list,
this field is automatically updated for you; it is otherwise uneditable.
This field type is included for completeness, but we discourage its
use. Use the one-based counts (BCNT, OCNT, or LCNT) instead.

The label for this field should be the plural name of the items to be
counted, such as “Networks” or “Options”. For best results, do not
use labels that start out "Number of” or “# of” (such as “Number of
networks” or “# of Options”) since the Data Editor copies the value of
the label as a header string for each item in the displayed list.

MDAT <« Modification Date and Time

The MDAT field is 4 bytes long and, like the DATE field, holds a
system date/time number, which is a count of the number of seconds
since Jan. 1, 1904. The Data Editor displays values of the field as a
readable string indicating the date and time the value represents.
This field can start at any byte offset in the resource; however, even
offsets are strongly recommended.

When the Data Editor saves an MDAT field in a changed or new
resource, it sets the field to the value of the current date and time.

OCNT e[IDne-based Word Count

The OCNT field is 2 bytes long and contains an unsigned integer, n,
in the range from 0 to 65535. This number represents how many
items are repeated in the first counted list beginning with a LSTC
field that occurs anywhere after the OCNT field at the same item
nesting level. As you add or delete items from the list, this field is
automatically updated for you; it is otherwise uneditable.

The label for this field should be the plural name of the items to be
counted, such as “Networks” or “Menus”. For best results, do not use
labels that start out "Number of” or “# of” (such as “Number of
networks” or “# of Menus”) since the Data Editor copies the value of
this label as a header string for each item in the displayed list.

THE TEMPLATE EDITOR

OCST - Odd C String

The OCST field is a variable-length field containing a C string, an
arbitrarily long sequence of non-null ASCII characters followed by a
null (0 byte). This field can start and end at any byte offset, and is
always at least 1 byte in length. If the length of the string is found
to be odd, an extra pad (zero) byte is appended after the terminating
null byte to ensure that the entire field uses up an odd number of
bytes (if an OCST field begins at an even byte offset, the following
field will start at an odd offset, and vice-versa).

This field type is included for compatibility with ResEdit; we
strongly discourage using the OCST field.

OSTR - Odd Pascal String

The OSTR field is a variable-length field containing a Pascal string.
The first byte of the field contains the length, n, of the string, and
the following n bytes are the characters in the string, where nis in
the range 0 to 255. If nis odd (thereby making the total field length
even), an extra zero pad byte is appended to ensure that the total
field length is odd (if an OSTR field begins at an even byte offset, the
following field will start at an odd offset, and vice-versa). This field
can start and end at any byte offset, and is always at least 1 byte in
length. This field type is included for compatibility with ResEdit; we
strongly discourage using the OSTR field.

The Data Editor displays non-empty strings within double quotes.
PNT < Point

The PNT field (with a trailing space: ‘PNTC) is 4 bytes long and
encodes a QuickDraw Point structure. The high order 2 bytes are
the Y coordinate; the low order 2 bytes are the X coordinate. The
Data Editor displays the value of a PNT field as

(x,y) = (34,200) (or whatever the numbers are)
so that there is no ambiguity as to which coordinate is which. Each
coordinate must be in the range -32768 to 32767. This field can start
at any byte offset in the resource; however, even offsets are strongly
recommended.

419

REsSORCERER UseErR MANUAL

420

PPST = Even-Padded, Pad Included Pascal String

The PPST field is a variable length field containing a Pascal string.
The first byte of the field contains the length, n, of the string, and
the following n bytes are the characters in the string, where nis in
the range 0 to 255. If n is even (thereby making the total field length
odd), an extra zero pad byte is appended to ensure that the total field
length is even (if an PPST field begins at an odd byte offset, the
following field will also). If a null pad byte is necessary, the length
field of the initial Pascal string is incremented to include the pad
byte as well. This field can start and end at any byte offset, and is
always at least 2 bytes in length.

The PPST field enables Resorcerer to parse portions of certain MPW
resources. Its use is highly discouraged since you have to check both
the first and the last byte of the field in order to tell exactly how
many characters are in the string.

PSTR - Pascal String

The PSTR field is a variable-length field containing a Pascal string.
The first byte of the field contains the length, n, of the string, and
the following n bytes are the characters in the string, where nis in
the range 0 to 255. Note that if there are an even number of
characters in the string, the total field length will be odd (if the
PSTR field begins on an even byte boundary, and has an odd number
of bytes in it, the field after it will begin on an odd boundary). This
field can start and end at any byte offset, and is always at least 1
byte in length.

The Data Editor displays non-empty strings within double quotes.

Pnmm < Fixed Length Pascal String

The Pnmm field is a fixed-length block of bytes in which to place a
Pascal string, with the string’s length byte placed at byte 0 of the
block. The length of the block is taken to be $Snmm bytes, where the
first hex digit, n, is in the range ‘0’ to ‘1’, and the following 2 hex
digits, mm, are each in the range ‘0’ to ‘F’ (upper case only). This
field can begin at any byte offset. The minimum size for this field is
P001, since the empty Pascal string consists of a single length byte
with value 0. The maximum length of any Pascal string is 255 bytes,
which (along with its initial length byte) can always be stored in a
P100 field. Bytes in the field beyond the logical end of the Pascal
string are set to 0.

THE TEMPLATE EDITOR

IMPORTANT COMPATIBILITY NOTE:

The Pnmm field type is not compatible with ResEdit 2.1, which uses
a similar scheme whereby $nmm encodes the maximum length of the
string, not the length of the block of data in which the string is kept.
Thus a POFF field in ResEdit is the equivalent of a Resorcerer P100
field, and a P0O0O field in ResEdit is equivalent to a P0O01 field in
Resorcerer. ResEdit is internally inconsistent on this front, since its
fixed-length C string specification works the other way around (e.g.
the same as Resorcerer).

The upshot of this is that if the Data Editor encounters a ResEdit
style Pnmm field it will allocate 1 less byte than ResEdit would.

Resorcerer features 7 field types for fixed-length blocks of string,
text, hex, or other data. In all cases (that is, +nmm, -nmm, Fnmm,
Pnmm, Cnmm, Tnmm, and Hnmm, the hex value $nmm specifies
the physical maximum size of the field, regardless of the type of data
being kept in it.

Sorcery: If Resorcerer’s Data Editor encounters a POFF, PO7F,
PO3F, PO1F, POOF, P0O07, P003, or POO1 field
(corresponding to Pascal strings of length up to 255, 127,
63, 31, 15, 7, 3, and 1, respectively), it will ask you if the
template is a ResEdit template, and if so whether you
want to use it as is or stop what you're doing in order to
fix it. These field types are the likeliest values to be
found in a ResEdit template, and the least likely to be
found in a Resorcerer template.

REAL = Single Precision 32-Bit Floating Point Number

The REAL field is 4 bytes long and encodes a single precision
floating point number. In THINK C, these are declared as a float

You can append a formatting command to the end of the REAL
field’s label string. The syntax of the command is similar to a
standard C language printf floating point escape sequence: %n.
n is the number of significant digits the Data Editor will use to
display the floating point value; if the field label string does not
exist, or is illegal, the Editor uses a default value.

421

REsSORCERER UseErR MANUAL

422

RECT - Rectangle

The RECT field is 8 bytes long and encodes a QuickDraw Rect
structure, which consists of four 2-byte coordinates in the order
(top,left,bottom,right). The Data Editor displays the value of the
RECT field as

(t,1,b,r) = (50,50,200,250) (or whatever the numbers are)
so that there is no ambiguity as to which coordinate is which. Each
coordinate must be in the range -32768 to 32767. This field can start
at any byte offset in the resource; however, even offsets are strongly
recommended.

When you open this field for editing, a Set button lets you screen
copy the coordinates of the rectangle. If the rectangular marquee is
within the bounds of any other Resorcerer window, the coordinates
are recorded into the field as local window coordinates; otherwise,
they are taken as global screen coordinates.

Sorcery: Option-clicking on the field directly lets you set the
rectangle bounds graphically.

RSID = Absolute or Relative Resource ID

The RSID field is 2 bytes long and contains a signed decimal
absolute or relative resource ID in the range -32768 to 32767. RSID
fields (as opposed to generic DWRD fields) enable the Data Editor to
open the referenced resource for you while you are editing the Data
resource. To determine the type of resource to open, the Editor scans
the field's label from the end, looking for a four-character resource
type enclosed in open and closed single quotes (e.g. ‘'STRor ‘infs’),
and uses the first one it finds. If it doesn’t find a suitable match in
the field label, it scans backwards in the resource for the first TNAM
field that occurs at the same or previous nesting level, and uses its
current value. Otherwise, the Editor can’'t determine the type and
does nothing, in which case you have to use the standard resource
opening/creation tools in your File Window.

When you open a RSID field to change the ID number, the Editor
checks to see if a resource type is determinable. If one is, the editing
dialog will contain an enabled Edit button that will either create the
resource if it doesn't exist, or open it for editing if it does.

Relative resource IDs are numbers that must be added to a base
resource ID before being used to reference a resource. The actual

THE TEMPLATE EDITOR

base ID is kept in the label string. The Editor will interpret the
value of the RSID field as a relative resource ID if the label string
ends with the base decimal number followed by a plus sign, as in:

RSID Resource ID of extension scope info (‘scop’) -27136 +

Sorcery: Option-double-clicking on a RSID field in the Data Editor
window will directly open (or create) the referenced
resource if its type can be determined by the above-
described scan.

SELF < Include This Template as a Counted List Item

The SELF field lets you design simple recursively structured
resources (i.e. trees of similarly structured data). It must be the only
field between the LSTC and LSTE that define a repeatable counted
list item. The actual data for each node in your tree is described by
the fields before and/or after the recursive counted list. The type of
recursive ordering you get is dependent on whether the list occurs
first, last, or in the middle in the template.

SFRC < SmallFract Fixed Point Number

The SFRC field is 2 bytes long and encodes a standard SmallFract
number (as documented in Inside Macintosh, volume 5, chapter 8) in
the range [0.0, 1.0). The SFRC field is the same as the fractional
portion of a FIXD field. This field can start at any byte offset in the
resource; however, even offsets are strongly recommended.

SKIP = Word Skip Offset

The SKIP field is 2 bytes long and contains an unsigned decimal long
value between 2 and 65535, which represents the number of bytes,
including the 2 bytes of the SKIP field itself, to skip to get to a
matching SKPE field. Typically, intervening fields contain complex
structures of variable size; skip offsets allow for fast scanning
algorithms when your resource data has variable-sized items or
fields in it that you need to skip over quickly. Although this field can
occur at any byte offset in the resource, even offsets are strongly
recommended.

SKIP...SKPE pairs may not be nested except as part of the standard
nesting of repeated list or keyed items. SKIP fields are not editable,
but are computed automatically for you. Their values are only
shown when you have the Data Editor's Show Offsets option set.

423

REsSORCERER UseErR MANUAL

SKPE = Skip End

The SKPE field allocates no data; it simply marks the position in the
data that should be used to calculate where the previous matching
BSKP, BSIZ, SKIP, WSIZ, LSKP, or LSIZ field should point to.

SKIP...SKPE pairs may not be nested except as part of the standard
nesting of repeated list or keyed items. Skip offset fields are not
editable, and their values are only shown in the Data Editor. When
you have the Show Offsets option set, the Data Editor displays
skips using pairs of small crop marks on the left. The first mark
indicates the skip offset field and the last mark indicates the last
field in the set of fields whose skip offset is being computed.

TNAM - Type Name

The TNAM field is 4 bytes long and encodes a four-character
Macintosh system or resource type name. It is displayed surrounded
by single quotes. This field can start at any byte offset in the
resource; however, even offsets are strongly recommended. If any
character value is less than $20, or equal to $7F, the Editor will
display the entire TNAM value in hex. You can enter any
character’s value in this field’s value-editing dialog either as four
characters, or as a nine-character string starting with a ‘$’ and
followed by exactly eight hex digits (leading 0's required).

When new resource data is created, TNAM fields are set to ‘????".
Tnmm <« Fixed Length Text

The Tnmm field is a fixed length block of bytes in which to place
pure ASCII text, beginning at byte 0 of the block. The length of the
block is taken to be $nmm bytes, where the first hex digit, n, is in
the range ‘0’ to ‘'9’, and the following 2 hex digits, mm, are each in the
range ‘0’ to ‘F’ (upper case only). This field can begin at any byte
offset. The minimum block size is TOO0—that is, the empty block—
which allocates 0 bytes of storage. The maximum block size
encodable using this scheme is T9FF, or 2559 (decimal) bytes. Bytes
in the field beyond the logical end of any text you enter are set to 0.

TXTS e« Sized Text Dump

The TXTS field consists of 0 or more bytes of data to be displayed as
text. The TXTS field must explicitly or implicitly be followed by a

424

THE TEMPLATE EDITOR

SKPE field, so that the parser can know when to stop parsing text
and start parsing subsequent fields. The amount of text parsed is
equal to the value of the previous matching skip offset (BSKP,
WSKP, or LSKP) or sizeof (BSI1Z, WSIZ, or LSIZ) in the resource,
minus the lengths of any intermediate fields.

The TXTS field lets you do a local dump of a variable length of text
data up to a given length recorded earlier in the resource. For
example, if in the sequence “WSIZ, REAL, REAL, REAL, TXTS,
SKPE” the value of the WSIZ field were 32, then the TXTS field
would be 32-3*4 bytes of text, since REAL fields are 4 bytes long.

UBYT < Unsigned decimal byte

The UBYT field is 1 byte long and encodes an unsigned decimal
number in the range 0 to 255. This field's value-editing dialog will
accept either decimal or hex input preceded by a ‘$'.

ULNG = Unsigned decimal long

The ULNG field is 4 bytes long and encodes an unsigned decimal
number in the range 0 to 4,294,967,295. The field can begin at any
byte offset in the resource; however, even offsets are strongly
recommended. This field’'s value-editing dialog will accept either
decimal or hex input preceded by a ‘$'.

UNIV < Universal THINK 96-bit Floating Point

The UNIV field is 12 bytes long and encodes a 96-bit extended
precision floating point number. The field can start at any byte
offset in the resource; however, long or quad word offsets are
strongly recommended. The UNIV field has the same format as the
XT96 field, except that the exponent portion of the floating point
number is duplicated and placed in the 16 bits of otherwise unused
pad space of the extended number. This allows an 80-bit extended
float to be embedded within the 96-bit Universal float. Neither of
the 96-bit formats have any more numerical precision than the 80-bit
format; the extra padding bytes are used for machine addressing
efficiency. For more information on these numeric types, see
Symantec’s THINK C manual and the Apple Numerics Manual,
Second Edition.

You can append a formatting command to the end of the field’s label
string. The syntax of the command is similar to a standard C
language printf floating point escape sequence: %n. nis the

425

REsSORCERER UseErR MANUAL

426

number of significant digits the Data Editor will use to display the
floating point value; if the field label string does not exist, or is
illegal, the Editor uses a default value.

UWRD < Unsigned decimal word

The UWRD field is 2 bytes long and encodes an unsigned decimal
number in the range 0 to 65535. The field can begin at any byte
offset in the resource; however, even offsets are strongly
recommended. This field’'s value-editing dialog will accept either
decimal or hex input preceded by a ‘$'.

WBIT =« Word Bit
WBnNnn = Word Bit Field

The WBIT and WBnNn fields occur in groups specifying individual
bits or groups of bits within a single word of data (16 bits). The
WBnNn field declares a bit field nn bits wide (01 <= nn <= 16)
anywhere within the word, as long as the field does not cross the
word’s boundary. As WBIT and WBnn fields are encountered in
order, they specify bits beginning with the most significant bit of the
word. When the Data Editor displays each bit or bit field, it labels
the field with the proper bit number or numbers (inclusive). The
value of a single bit is shown as either “On” if the bit is set, or “Off” if
the bit is clear. The value of a bit field is numeric. You can change
the value of single bits using the Data Editor's Toggle Value menu
command. The group of 16 bits can begin at any byte offset in the
resource; however, even offsets are strongly recommended.

WFLG = Word Flag

The WFLG field displays the value of the low-order bit 0 of a word.
The other 15 bits are not editable and set to 0. You can change the
flag value using the Data Editor’'s Toggle Value menu command.

WHEX « Word Hex Data

The WHEX field is a variable length field containing a 2-byte
unsigned word followed by a block of data of unknown format. The
first 2 bytes of the field contain the length, n, of the block, and the
following n bytes are the pure hex data, where n is in the range 0 to
65,535. This field can start and end at any byte offset, and is always
2+n bytes in length. It is usually a good idea to follow WHEX fields
with an AWRD or ALNG field. The initial length field is not
displayed, but is automatically computed for you.

THE TEMPLATE EDITOR

WSHX « Word Skip Hex Data

The WSHX field is a variable length field containing a 2-byte long
followed by a block of hex data of unknown format. The first 2 bytes
of the field contain the skip offset, n+2, of the block, and the
following n bytes are the pure hex data, where n is in the range 0 to
65,533. This field can start and end at any byte offset, and is always
2+n bytes in length. It is usually a good idea to follow WHEX fields
with an AWRD or ALNG field. The initial skip offset is not
displayed, but is computed automatically for you.

WSIZ =« Word Sizeof

The WSIZ field is 2 bytes long, and contains an unsigned decimal
value between 0 and 65,535 that represents the number of bytes in
the following data, up to a matching SKPE field. Typically,
intervening fields contain complex structures of variable size or
unknown format. The byte count stored in the WSIZ field does not
include its own size.

WSIZ...SKPE pairs may not be nested except as part of the standard
nesting of repeated list or keyed items. WSIZ fields are not editable
(their values are automatically computed for you), and their values
are only shown when you have the Show Offsets option set in the
Data Editor.

We discourage the use of WSIZ fields in favor of SKIP/WSKP fields,
which are more elegant and used more often in Apple resources.

WSKP < Word Skip Offset

The WSKP field is 2 bytes long, and is the same as a SKIP field. Itis
included for completeness. See the SKIP explanation for more on its
interpretation.

WSTR - Word String

The WSTR field is a variable-length field containing a 2-byte word
followed by a string of ASCII characters. The first word of the field
contains the length, n, of the string, and the following n bytes are the
characters in the string, where n is in the range 0 to 65535 (note that
the Data Editor can only edit up to 32K bytes of text at one time).
This field can start and end at any byte offset, and is always 2+n
bytes in length. Note that if there are an odd number of characters

427

REsSORCERER UseErR MANUAL

in the string, the total length will be odd (if the WSTR field begins on
an even byte boundary, and has an odd number of bytes in it, the
field after it will begin at an odd offset). It is usually a good idea to
follow WSTR fields with an AWRD or ALNG alignment field.

The Data Editor displays non-empty strings within double quotes.
XT80 = Extended Precision 80-bit Floating Point Number

The XT80 field is 10 bytes long and encodes an 80-bit SANE
extended precision number. Each of these fields can start at any
byte offset in the resource; however, long word offsets are strongly
recommended. This field is the same as the EXTN field.

XT96 = Extended Precision 96-bit Floating Point Number

The XT96 field is 12 bytes long and encodes a 96-bit extended
precision number. Each of these fields can start at any byte offset in
the resource; however, long or quad word offsets are strongly
recommended for XT96 fields. XT96 field represents a floating point
number used internally by Apple’'s SANE library and the 68881 FPU
chip in some Macs. They have the same numerical precision as 80-
bit floats; the difference in their lengths is due to extra zero pad
bytes that make the total length of the float a multiple of the length
of a long word, which in turn speeds certain kinds of hardware
memory access. For more information, see the Apple Numerics
Manual, Second Edition.

You can append a formatting command to the end of the field’s label
string. The syntax of the command is similar to a standard C
language printf floating point escape sequence: %n. nis the
number of significant digits the Data Editor will use to display the
floating point value; if the field label string does not exist, or is
illegal, the Editor uses a default value.

ZCNT e Zero-based Count

The ZCNT field is two bytes long and contains a signed integer, n, in
the range from -1 to 32767. This number represents 1 less than the
number of repeated items in the first counted list beginning with a
LSTC field that occurs anywhere after the ZCNT field at the same
item nesting level. As you add or delete items from the list, this field
is automatically updated for you; it is otherwise uneditable.

This field type is included for compatibility with some of the early
428

THE TEMPLATE EDITOR

Macintosh resource types, but its use is discouraged. Use the one-
based counts (BCNT, OCNT, or LCNT) instead.

The label for this field should be the plural name of the items to be
counted, such as “Networks”, or “Menus”. For best results, do not
use labels that start out “Number of” or “# of”, such as “Number of
networks” or “# of Menus”, since the Data Editor copies the value of
this label as a header string for each item in the displayed list.

429

REsSORCERER UseErR MANUAL

430

EXAMPLES OF TEMPLATES

This section shows you a variety of examples, both simple and complex, of
how to use the various template fields to describe your custom resources.
Many of the examples are related to each other, so you should (at least the
first time) read them through consecutively.

For an example of how to build a filtered template, see the “Designing
Filters” section later in this chapter.

It is also very instructive to look at some of the TMPL resources in the
various files in the “Resorcerer® Templates” folder distributed with your
copy of Resorcerer. These templates range in complexity from quite simple
(‘'sysz’ resources with one field) to extremely complicated (QuickDraw ‘PICT’
resources with over 3000 fields!).

EXAMPLE

Suppose you want to create a custom ‘QUAD’ resource, which consists of
the integer coordinates of the four vertices of an arbitrary quadrilateral.

SOLUTION

QuickDraw uses signed 16-bit words to encode coordinate values. A
minimal solution would be to create a template consisting of eight
fields: the vertical and horizontal coordinates of each of the four
guadrilateral vertices:

DWRD X coordinate of first vertex
DWRD Y coordinate of first vertex
DWRD X coordinate of second vertex
DWRD Y coordinate of second vertex
DWRD X coordinate of third vertex
DWRD Y coordinate of third vertex
DWRD X coordinate of fourth vertex
DWRD Y coordinate of fourth vertex

This describes a resource of four pairs of two-byte words, beginning with
the X coordinate of the first vertex and ending with the Y coordinate of
the fourth vertex.

THE TEMPLATE EDITOR

EXAMPLE

QuickDraw uses the basic Point type to hold coordinate pairs, and you
would like to read the resource data directly into a structure consisting
of four Point s. The previous solution won't work, since Point s store
their vertical coordinates first.

SOLUTION

Use the ‘PNT ' field type (don’t forget the final space character) for
QuickDraw points.

PNT First vertex

PNT Second vertex

PNT Third vertex

PNT Fourth vertex
EXAMPLE

You decide that you want your ‘QUAD’ resource to be an array of
guadrilaterals, so that you can keep any number of them in one
resource rather than in lots of individual resources. Each quadrilateral
takes up 16 bytes of storage, so the total number of quadrilaterals in the
resource will be computed by taking the total size of the resource in
bytes and dividing by 16.

SOLUTION
Use the List Begin (LSTB) and List End (LSTE) fields to indicate the

beginning and end of a set of template fields that can be repeated
indefinitely until the end of the resource data.

LSTB
PNT First vertex
PNT Second vertex
PNT Third vertex
PNT Fourth vertex
LSTE

The Data Editor will display each set of four ‘PNT[Ifields indented and
marked as one list entry, and will allow you to create and delete these
as single items.

431

REsSORCERER UseErR MANUAL

EXAMPLE

Rather than calculate the number of quadrilaterals in the resource, as
in the previous example, you would like an explicit count placed just
prior to the repeated list in the resource data. If the list is empty, you
want the initial count to be set to 0. We may want to add other data
after the list, which the previous indefinitely repeated list would
preclude being able to do.

SOLUTION

OCNT Quadrilaterals

LSTC
PNT First vertex
PNT Second vertex
PNT Third vertex
PNT Fourth vertex

LSTE

The 1-based Count (OCNT) field takes up two bytes and is labeled with
the name of the item that will be repeated, in this case “Quadrilaterals”.
Instead of the List Begin (LSTB) field used in the last example, you
have to use the Begin Counted List (LSTC) field to make sure that the
Data Editor knows it should place the item count into the OCNT word
prior to the first item of the list.

For instance, if the list consists of three quadrilaterals, the bytes 0-1
will contain the number 3, bytes 2-17 (decimal) will contain the first
guadrilateral’s four vertices, bytes 18-33 will contain the second
guadrilateral’s four vertices, and bytes 34-49 will contain the vertices of
the third quadrilateral.

EXAMPLE

Another resource you might design would be a ‘POLY’ (or maybe
‘PGON’) resource, which will contain the data for an arbitrary polygon.
This would be a list of vertices preceded by the number of vertices.
However, you want to keep the coordinates in a virtual floating point
system, as opposed to QuickDraw points. Furthermore, you want each
polygon to be associated with a name, a color, and a set of 16 flag bits.

432

THE TEMPLATE EDITOR

SOLUTION

HWRD Flag bits

ESTR Polygon name

OCNT Vertices

COLR Polygon fill color

LSTC
REAL X coordinate %6
REAL Y coordinate %6

LSTE

Notice that it is not necessary for the OCNT field to be directly next to
its list of counted items. The Editor allows count fields to be placed
anywhere prior to the start of the list, as long as it's at the same nesting
level as the list and as long as there are no intervening counted lists to
confuse things. In general, however, it is a good idea to start your
counted lists just after the count field unless there is a good reason not
to.

Since the ESTR field starts on an even offset into the resource data, the
OCNT field will also. The offset at which the OCNT field data begins
must be determined by looking at the length of the string kept in the
0'th byte of the ESTR field, and adding 1 to it (since you need to include
the length byte itself). If that number is odd, add 1 again to account for
the pad byte; the result is the number of bytes from the beginning of the
ESTR field to the beginning of the OCNT field. When the Data Editor
displays the coordinate values, it will use six significant digits for both
Xandy.

EXAMPLE

In the previous example, the polygon resource’s flag bits would only be
editable as hex. Since individual bits have meaning and position within
the word, you would like the Data Editor to help you remember which
bit is which. Furthermore, you would like to pre-allocate a fixed
amount of storage into which the polygon’s name string will be stored,
so that you know at exactly which offset the subsequent field will start.
And while you're at it, put the count field back next to the list, and keep
the coordinate values in a high-precision floating point system. You
also want to plan ahead and reserve some space in the coordinate list
for a third dimension.

433

REsSORCERER UseErR MANUAL

SOLUTION
WBIT Traverse clockwise (high-order bit in word)
WBIT Fill when drawing
WBIT Use color
WBIT Self-intersecting
WBO03 Outline thickness (0-7)
WBO09 Reserved
C040 Polygon name
COLR Polygon fill color
OCNT Vertices
LSTC
DOuUB X coordinate %10
DOuUB Y coordinate %10
FLNG Reserved (in case we go to 3 dimensions)
FLNG Reserved (in case we need a Z double coordinate)
LSTE

The four WBIT and two WBnNn fields encode each bit, from bit 15 down
to bit 0, of the first word of the resource data. The upper four of these
bits have been labeled with what they stand for, the next 3-bit field
(WBO03) contains a decimal number for the thickness of any border
outline, and the rest of the bits have been reserved for enhancements or
other properties. The Data Editor shows you the bit numbers when you
edit them, and recognizes the “Reserved” label in order to make the bit
field uneditable.

The C040 field allocates $040 (64 decimal) bytes in which you can place
a C string for the null-terminated polygon name (maximum name size
will be 63 characters). This way, the COLR field data is guaranteed to
start at offset 66 (decimal) in the resource data. This lets you do the
following (which you would not be able to do using the previous example
with its variable length string field) in C:

typedef struct {
short double x; /* sizeof(short double) == 8 */
short double y;
short double unused_z;

} RealPoint;

434

THE TEMPLATE EDITOR

typedef struct {

unsigned short clockwise : 1,
fill : 1,
useColor : 1,
isIntersecting : 1,
outline : 3,
reserved : 9;

char name[64];

RGBColor fillRGB;

short numVertices;

RealPoint firstVertex(];

} PolygonHeader;

PolygonHeader **poly;
RealPoint *vertex;

poly = (PolygonHeader **)GetResource('POLY’,128)
if (GoodResource(poly)) {
HLock(poly);

n = (**poly).numVertices;
vertex = (**poly).firstVertex;

for (k=0; k<n; k++,vertex++) {
/* Process the next vertex */

}

HUnlock(poly);
}

435

REsSORCERER UseErR MANUAL

436

EXAMPLE

Each face of a polyhedron is a polygon, with any number of polygons
making up the polyhedron. Since each polygon is itself a list of fields,
you might want to design a ‘HDRN' resource that is a list of lists. For
now, you no longer care about naming each polygonal face of the
polyhedron, but want a name for the polyhedron itself. Since you know
that your application only deals with polyhedra with only a few faces,
you can keep the face count in a byte instead of a word. Since the
previous field is also a single byte, the beginning of the counted list of
faces will be on an even offset. You also want to use true 3D
coordinates this time.

SOLUTION
WBIT Traverse clockwise (high-order bit in word)
WBIT Fill when drawing
WBIT Use color
WBIT Self-intersecting
WBO03 Outline thickness (0-7)
WB09 Reserved
P100 Polyhedron name
DBYT Transformation index
BCNT Faces
LSTC
WB16 Polygon flag bits
OCNT Vertices
LSTC
DOUB X value %10
DOUB Y value %10
DOUB Z value %10
LSTE
LSTE

The P100 field pre-allocates the maximum of 256 bytes to keep a Pascal
string for the polyhedron name. Following it is a single byte containing
a number that you plan to use to index an array of transformations that
your program supports. After this is a byte containing the number, n, of
polygon faces following. Each of these n polygons consists of a word of
flag bits (WB16), followed by a count, m, of polygon vertices, followed by
m vertex items in the list.

THE TEMPLATE EDITOR

EXAMPLE

The previous example contained a single byte labeled the
transformation index, a number between 0 and N-1, where N is the
number of transformations your application currently supports. But
when editing the resource with the Data Editor, you would like help
remembering the meanings of the index values that go in that field.
You also want to add a symbolic constant for the outline thickness to
help remind yourself that a thickness of 0 means no outline (that is, it's
a special case). And while you're at it, you want to use an even higher
precision floating point type and add some trailing fields after the
doubly nested list.

SOLUTION

WBIT Traverse clockwise (high-order bit in word)
WBIT Fill when drawing
WBIT Use color
WBIT Self-intersecting
WBO03 Outline thickness (0-7)
CASE No outline=0
WBO09 Reserved
P100 Polyhedron name
DBYT Transformation index
CASE 90° Counterclockwise=1
CASE 90° Clockwise=0
CASE Skew=2
CASE Mirror=3
CASE Dual=4
CASE Stellate=5
BCNT Faces
LSTC
WB16 Polygon flag bits
OCNT Vertices
LSTC
EXTN X value %10
EXTN Y value %10
EXTN Z value %10
LSTE
LSTE
DATE Creation date
RSID Picture (‘PICT’) resource ID

The CASE fields define symbolic names for the important values that
437

REsSORCERER UseErR MANUAL

438

you might want to install in any given field. The characters in the label
field for each CASE field up to the ‘=" sign are used to create a pop-up
menu for you to choose from when you edit the field's value in the Data
Editor. Whichever menu choice you make causes the value string to the
right of the ‘=" sign in the above label string to be installed. The pop-up
menu’s entries will be created in the same order as the above CASE
statements appear in the template.

For algorithmic reasons, our application needs to encode a clockwise
transformation as 0 and counterclockwise as 1. But the more common
transformation is the latter. So we place the counterclockwise CASE
first in the list of symbolic values so that each time we create one of
these resources the DBYT field will be set to 1 (counterclockwise) by
default.

Each coordinate is now kept in an 80-bit extended double floating point
field. And after the list of faces, you've added a date time stamp field,
and a resource ID field for a related ‘PICT’ resource that illustrates this
polyhedron. You can now open or create this ‘PICT’ resource directly by
Option-double-clicking on the resource ID field when you edit it.

THE TEMPLATE EDITOR

EXAMPLE

When scanning the polyhedron resource, there are times when you want
to get directly to the resource ID field because you don't care about the
intervening variable length lists. To skip across the lists, though, you
need to know how far to go, something that is dependent on the lengths
of the lists and their items. The length can be different for every
resource.

SOLUTION

SKIP Offset to get to illustration’s resource 1D
WBIT Traverse clockwise (high-order bit in word)
WBIT Fill when drawing
WBIT Use color
WBIT Self-intersecting
WBO03 Outline thickness (0-7)

CASE No outline=0
WB09 Reserved
P100 Polyhedron name
DBYT Transformation index
CASE 90° Counterclockwise=1
CASE 90° Clockwise=0
CASE Skew=2
CASE Mirror=3
CASE Dual=4
CASE Stellate=5
BCNT Faces
LSTC
WB16 Polygon flag bits
OCNT Vertices
LSTC
EXTN X value %10
EXTN Y value %10
EXTN Z value %10
LSTE
LSTE
DATE Creation date
SKPE
RSID Picture (‘PICT’) resource ID

The SKIP field here contains how many bytes to add to the SKIP field's
address (corresponding to offset O in this particular resource) in order to
get the address of the resource 1D word.

439

REsSORCERER UseErR MANUAL

440

EXAMPLE

Suppose you wanted to reference all your ‘HDRN' polyhedron resources
from a master table of contents in a ‘'HDRA' resource. There are two
ways to reference another resource of a given type, either by specifying
its resource ID or its resource name. Therefore, there are two alternate
structures your table of contents might take on. The first uses resource
names, and the second method uses resource IDs. Furthermore, you
want to be able to override the default resource type for any named
resource by explicitly specifying another possible type, unless that type
is 0, in which case the default should be used.

SOLUTION
TNAM Default polyhedra resource type (usually ‘HDRN")
KWRD Format of table
CASE Use resource names=0
CASE Use resource IDs=1
KEYB 0
OCNT Polyhedra resources
LSTC
TNAM Override polyhedron resource type
CASE Use default=$00000000
ESTR Resource name
LSTE
KEYE
KEYB 1
OCNT Polyhedra resources
LSTC
RSID Resource 1D
LSTE
KEYE

In this solution, you make use of a key field and its keyed item list. If
the KWRD key value is 0, then the following resource data will have the
structure of a counted list of override resource types and their resource
names. If the key is 1, then the following resource data will have the
structure of a counted list of resource 1D words.

Note that Option-double-clicking on the RSID field in the Data Editor
will open the resource whose type is given in the very first TNAM field,
and not the TNAM field within the first keyed item. The RSID field is
within the context of the first TNAM field but not within that of the
second TNAM.

THE TEMPLATE EDITOR

EXAMPLE

The previous example is not really general enough. You might want
some resources to be referenced by ID while others are to be referenced
by name, all within the same table of contents.

SOLUTION
OCNT Polyhedra resources
LSTC
TNAM Polyhedra resource type
CASE Our standard=HDRN
CASE Apple standard=hdrn
KWRD Type of reference
CASE Resource 1D=0
CASE Resource name=1
KEYB 0
RSID Polyhedron resource 1D
KEYE
KEYB 1
ESTR Resource name
KEYE
LSTE

In the previous example, you had a variable keyed format, one keyed
item consisting of one kind of list, and the other keyed item consisting of
another type of list. In this solution, there is one list of items, each item
of which has a variable keyed format. Thus, when scanning the list, the
value of each key determines whether the next two bytes should be
taken as a resource 1D, or whether the next variable number of bytes
should be taken as a Pascal string.

You use an even-padded Pascal string to align on a word boundary at
the end of every list item. This guarantees that the start of the next list
item (the TNAM field) is always on an even boundary.

To make it easier to set the TNAM field for each item in the list, you

add a CASE menu to the field for the two most common cases of
polyhedra resource types.

441

REsSORCERER UseErR MANUAL

EXAMPLE

Suppose that someone else’s application implements a third type of
resource referencing, using a key value of 2 to indicate that subsequent
data is in a new format (for instance, file name, directory ID, resource
type and resource index). The problem is that you don't know what the
format is, because you only have the old template. The Data Editor will
be unable to open the new resource if any item in the list of variant
keyed items makes use of the new format. This is a general format
extensibility problem that frequently arises, and it is a problem because
it keeps you from editing later fields in the data whose formats your
template does know about.

SOLUTION

The solution is to think ahead and design in a skip field around your
keyed items before you let the rest of the world begin creating them
also. You need to add the unknown keyed item to take care of holding
the data of those items in the third (or other) format that your template
does not yet know about. Apple’'s Balloon Help ‘hmnu’ resource is a
good example of this style of variant item.

OCNT Polyhedra resources
LSCT
TNAM Polyhedra resource type
CASE Standard=HDRN
CASE AppleStd=hdrn
WSKP Offset to next item
KWRD Type of reference
CASE Resource 1D=0
CASE Resource name=1
KEYB 0
RSID Polyhedron resource 1D
KEYE
KEYB 1
ESTR Resource name
KEYE
KEYB
HEXD Unknown reference format
KEYE
SKPE
LSTE

442

THE TEMPLATE EDITOR

EXAMPLE

Suppose you want to design an 8 by 16 cell array, in which various

symbols will appear. The symbols are taken from a special symbol font
and so are indexed by a unique ASCII character in the range 0 - 127.

You want to keep the array in an ‘ASYM'’ resource.

SOLUTION

TO10
TO10
TO10
TO10
TO10
TO10
TO10
TO10

With the above fields, the Data Editor will display each consecutive 16

Bytes 0 - 15
Bytes 16 - 31
Bytes 32 - 47
Bytes 48 - 63
Bytes 64 - 79
Bytes 80 - 95
Bytes 96 - 111
Bytes 112 - 127

bytes of the resource in a single field of type T010.

EXAMPLE

The first 32 values of the above array represent generally non-printable
characters that may not be easily viewable or even editable when you

open a T010 field for editing. Furthermore, ASCII 127 (the Delete
character) is also better displayed in hex.

SOLUTION

HO010
HO010
TO10
TO10
TO10
TO10
TO10
TOOF
HO01

Bytes 0 - 15
Bytes 16 - 31
Bytes 32 - 47
Bytes 48 - 63
Bytes 64 - 79
Bytes 80 - 95
Bytes 96 - 111
Bytes 112 - 126
Byte 127 (DEL)

The first two and the last rows of the array, representing these non-
printable characters, are made editable in hexadecimal, rather than
attempting to print them as text.

443

REsSORCERER UseErR MANUAL

444

EXAMPLE

Suppose you want to keep a resource that contains a family tree of
names and ages, along with a list of all children for each name. In this
case, we can use a counted recursive list.

SOLUTION
ESTR Name
DWRD Age
OCNT Children
LSTC
SELF
LSTE

This resource consists of a tree of families, each consisting of an even
padded Pascal nhame string, and an age field, followed by a count of
children, each of which is a node of the same structure.

A C routine to scan this resource data (assumed locked) might look
something like this:

/*

*

Scan a family tree whose parent name begins at
data, which must be an even address. Return
the number of bytes scanned.

*

*

long ScanFamily(register unsigned char *data) {
short age, kids, len;
unsigned char *name;

name = data; /* Start of family name */

len = 1 + *data; [* Size of name field */
if (isOdd(len)) len++; /* Skip any pad byte */

data +=len; /* Get to age field */

age = *(short *)data; /* OK, cause it's even */
data += sizeof(short); /* Move on to count */
kids = *(short *)data; /* Still at even address */
data += sizeof(short); /* Get to start of list */

/* Do something here with name, age, and kids */
/* And then recursively scan all the kids */

while (kids-- > 0) /* For all children... */
data += ScanFamily(data); /* Do it again */

return ((long)(data - name));

THE TEMPLATE EDITOR

EXAMPLE

Using the last template for a family tree resource, you've built one or
more extensive tree resources. But you've decided that it would be nice
to record, in a new field, the sex of each person. The problem is that if
you change the TMPL you won't be able to open the existing resources,
whose old structure is no longer described by the new template.

SOLUTION
First, you must create an intermedate template. Use one of the

insertion fields (in this case to insert a word) in the spot in the template
where you want the new gender field to be recorded:

ESTR Name
DWRD Age
+WRD Insert two bytes here
OCNT Children
LSTC
SELF
LSTE

Now open every tree resource. The newly inserted +WRD fields will be
inserted recursively, set to zero, and marked dirty. Now, close and save
the tree resource.

You can only open and close the resource once using a template with
any insertion (or deletion) field. After the change, you must replace the
insertion field with a properly labeled field, such as:

ESTR Name
DWRD Age
FBYT Filler
DBYT Gender
CASE Female=0
CASE Male=1
OCNT Children
LSTC
SELF
LSTE

Don't forget to change your parsing code too!

445

REsSORCERER UseErR MANUAL

446

DEsIGNING FILTERS

When a template (‘TMPL") resource purportedly describes a given resource
type, the first four characters of the template’s resource name declare the
type of data the template describes. However, if the first field in the
template is of type ‘FLTR’, then the template declares to the Data Editor
that the Editor should call upon a filter to pre-process the resource data into
a temporarily different structure. The other fields in the template describe
this temporary structure. When you finish editing the temporary structure,
the Data Editor will call upon the filter a second time in order to convert the
temporary structure back into the legal structure for the resource type.
Filters let you edit indexed, encrypted, and/or compacted resources, among
other things.

Filters are kept as code resources of type ‘FLTR’ containing a single
subroutine. The subroutine can be compiled in either C or Pascal; the first
character of the code resource’s name should be either a ‘C’ or a ‘P’ to tell
Resorcerer the type of calling sequence to use when it calls the filter.

The purpose of the filter is basically to take two handles of data, one the
source and one the destination, and to convert the data in the source handle
into a different form in the destination handle. Filter's used by the Data
Editor should generally be able to perform the reverse transformation.

Any given filter can be responsible for filtering more than one resource type.
The first four characters in the ‘FLTR’s resource name are used as flags,
with the first character indicating the language. Currently, the second,
third, and fourth characters should be set to spaces. The remaining
characters in the name declare a list of the resource types (separated by a
single space) that the filter pre- and post-processes. For example,

FLTR 128 “C SPUD HUNK”

is a filter code resource, whose main entry point will be called asa C
subroutine every time the Data Editor is presented with

TMPL 741 “SPUD”
or TMPL 742 “HUNK”

in order to edit a resource of type ‘SPUD’ or ‘'HUNK’ (but only if the
template’s first field is of type ‘FLTR’).

The resource IDs for both templates and filters can be arbitrary.

THE TEMPLATE EDITOR

THE FILTER INTERFACE

Each filter code resource has one main entry point, called as a C
subroutine or as a Pascal procedure, depending on the first character of
the ‘FLTR’ resource name:

void main(FilterRecord *fPtr);
or PROCEDURE ResourceFilter(fPtr : FilterRecordPtr);

The FilterRecord structure is defined in the file “FLTR.h™:

[* Types of filtering (messages) */

#define filterDeclareVersion 0
#define filterConvert 1
#define filterUnconvert

#define FILTERROOM 15

/I Parallel vectors of C or Pascal callbacks to Resorcerer

typedef struct {
void (*PleaseWait)(void);
Handle (*GetResData)(ResType type, short id);

} C_FltrCallbacks;

typedef struct {
pascal void (*PleaseWait)(void);
ascal Handle (*GetResData)(ResType type, short id);
FP_FItrCaIIbac s;

/l FLTR's take pointers to a single FilterRecord as an

argument
typedef struct {
long version; /I Version of Filter
long message; /I Type of filtering to do
long errCode; /I Error return code
long sameOffsets : 1, /I TRUE when no data
moves
reserved : 31; /I More flags to come
Handle original; /I "Resource" data
ResType oType; // Data type
short olD; /l Resource ID
short OAttrs; /I Resource attributes
Handle converted; /l Filtered data
ResType cType; // Data type
short clID; /l Resource ID
short CcAttrs; /I Resource attributes
union { /I Resorcerer callback
functions
C_FltrCallbacks C; /I C style
f_ljlltrCaIIbacks P; I/l Pascal style
call;

447

REsSORCERER UseErR MANUAL

long expansion[FILTERROOM]; /l Room to grow
(zeroed)

} FilterRecord, *FilterRecordPtr, **FilterRecordHandle;

The version field is for the filter code resource to declare itself to the
caller when the message field is filterDeclareVersion . The only
known version at this time is 0.

message contains a selector indicating what the caller is requesting the
filter to do. Currently, only three selectors are defined:

filterDeclareVersion
filterConvert
filterUnconvert

errCode arrives preset to 0, and can be ignored if there are no errors.
Otherwise, the filter should set it to a non-zero error code.

sameOffsets should be set only if the filter leaves the positions of
every field in the input the same as in the output. If this bit is set, the
Data Editor will not put up the usual alert when the user chooses Show
Offsets.

Two sets of variables deliver resource information and data, one for the
original input resource and one for the converted output. Both handles
will be already allocated. If message is filterConvert , then

original is the source and converted is the destination; otherwise, if
message is filterUnconvert , then original is the destination and
converted is the source. The resource type, ID, and attributes
information is for completeness; most of it is usually unnecessary.
However, if the ‘FLTR’ is reponsible for more than one type of resource,
then you need to attend to the oType field to see what type of resource
the caller is presenting to it.

Note: The data of the destination handle should be changed, not
the handle itself, which arrives pre-allocated.

call.C.PleaseWait (call.P.PleaseWait) is a pointertoa C
(Pascal) subroutine that animates the caller’s “busy” cursor. The
routine takes no arguments and should only be called if the filter finds
itself in a long loop. When the filter's resource name starts with ‘C’,

call.C.PleaseWait is a pointer to a C subroutine; if the name starts
with ‘P’, then call.P.PleaseWait points to a Pascal procedure.
call.C.GetResData(ResType type, short ID) isapointertoa C

448

THE TEMPLATE EDITOR

function that returns a handle to a detached copy of a resource of a
giventype and ID, or NIL if none. As above, the language the function
is written in is determined by the first character in the filter’s resource
name, and you should call the C variant or the Pascal variant
accordingly.

Note: It is the filter’s responsibility to dispose of any handle
delivered to it by GetResData (using DisposeHandle).

expansion is an array of storage reserved for expansion for other
callback routines or data fields that may be useful in the future. All
unused slots are set to 0 (NIL).

FiLTER ExampLE: INDEXED C STRING(‘CST#’) RESOURCES

Standard string lists on the Mac are kept in resources of type ‘STR#,
which are described by the template:

OCNT Strings
LSTC

PSTR
LSTE

There are some constraining factors to this structure. The first is that
no string can be longer than 255 characters, and the second is that the
resource must be scanned sequentially in order to find the i'th string.
The Toolbox’s GetlndString() does just this. A third constraint
might be that the number of strings can’'t be more than will fit in a 16-
bit word (the OCNT field).

A more general and powerful resource would be something like this:

LCNT Entries
LSTC

HLNG Offset to i'th string from resource start
LSTE
HLNG Sentinel offset to first byte after last string
LSTB

CSTR String
LSTE

The difficulty with this structure is that the Data Editor cannot fill in
the values of each HLNG offset field in the first list, since there is no

449

REsSORCERER UseErR MANUAL

450

convention that links each entry to the string it points to in another
arbitrary list. Another more subtle problem is that there is no way the
Data Editor can guarantee that the two lists have the same number of
items in them, which should be the case. In fact, there is nothing to say
that the index entries are even in the same order as the strings.

Even though it would be possible to define yet more field types to take
care of these particular situations, there will always be exceptions.
Some resource types, for example, have initial indexes that contain
more entries than the second list to which they refer, due to the need for
a sentinel value at the end. Arbitrary conventions make it difficult to
provide a general solution within the template description, particularly
for resources that have already been designed as Rez source code to be
compiled but not edited.

The solution is to define a filtered template for ‘CST#' resources that
describes the list of strings only, so that you never have to see or worry
about the initial list of indexes. The associated filter simply deletes the
initial index in the resource data, and presents the Data Editor with a
structure described by the filtered template:

FLTR These fields will be post-processed into the ‘CST# form
LCNT Strings
LSTC
CSTR String
LSTE

When the Data Editor sees the FLTR field in the ‘TMPL’ whose name
begins with “CST#", it looks for an associated filter (FLTR’) resource

THE TEMPLATE EDITOR

whose name contains ‘CST#' in the list of resource types it filters.

The C code for this filter might look like this:

#include "FLTR.h"
[* Prototypes for local routines */

void Deletelndex(FilterRecord *f);

void AddIndex(FilterRecord *f);

int HAppend(Handle dst, Handle src, long start, long size);
long strlen(char *p);

void main(FilterRecord *f);

}/?id main(FilterRecord *f) { /I Main entry point for
ilter

switch(f->message) {
case filterDeclareVersion:
f->version = OL;
break;

case filterConvert:
Deletelndex(f);
break;

case filterUnconvert:
AddIndex(f);
break;

}

Il Delete the initial list of index offsets,
I but leave long count field.

static void Deletelndex(FilterRecord *f) {

long numStrings,startindex,startStrings;
long endStrings,sizeStrings;

/* Get index and strings from ‘CST# data */

numsStrings = *(long *)(*f->original);
startindex = sizeofgong);
startStrings = startindex + (numStrings+1) *
sizeof(long);
endStrings = GetHandleSize(f->original);
sizeStrings = endStrings - startStrings;

/* Start with long count, add strings */

451

REsSORCERER UseErR MANUAL

SetHandleSize(f->converted,sizeof(long));
*(long *)(*f->converted) = numStrings;

f->errCode = HAppend(f->cfonverted,

>original,startStrings,sizeStrings);

)

/i When unconverting, we build the index in original,
I and then append the non-indexed list of strings.

static void AddIndex(register FilterRecord *f) {

long size,numStrings,startindex,sizelndex;
long startStrings,endStrings,sizeStrings;
register long *offset,i,stringOffset;

register char *p;

numstrings = *(long *)(*f->converted);
startStrings = sizeof(long);
endStrings = GetHandleSize(f->converted);
sizeStrings = endStrings - startStrings;
/I Allocate initial index
startindex = sizeof(long);
sizelndex = startindex + (numStrings+1) * sizeof(long);
SetHandleSize(f->original,sizelndex);
if (f->errCode = MemError())
return;
/* Scan packed C strings, and set index offsets */

HLockEf->converted);
HLock(f->original);

/I Install string and index count
*(long *)(*f->original) = numStrings;

/I Prepare loop that includes extra sentinel offset at

end
p = (*f->converted) + startStrings;
offset = (long *) ((*f->original) + startindex);
stringOffset = sizelndex;
/I For each string, set index entry...
for (i=0; i<=numStrings; i++) {
, *offset = stringOffset; /* Install index entry
*
offset++; [* On to next entry */
size = 1 + strlen(p); /* Include null
byte */
p += size; /* On to next string */
stringOffset += size; /* And get its
offset */

/* Keep user informed of long loop */

i}f (i > 256) (*f->call.C.PleaseWait)();

452

THE TEMPLATE EDITOR

HUnIock§f->converted);
HUnlock(f->original);

/* Now append strings after index */

startStrings = sizeof(long);

sizeStrings = GetHandleSize(f->converted) -
startStrings;

f->errCode = HAppend(f->ofriginaI,

>converted,startStrings,sizeStrings);

I Append amount bytes of data from src to dst.
I Deliver memory error or not. Handles can be unlocked.

static int HAppend(Handle dst, Handle src, long start,long
amount

long size; int err;

size = GetHandleSize(dst);
SetHandleSize(dst,size+amount);
if (err = MemeError()) return(err);

BlockMove((*src)+start, (*dst)+size, amount);
return(noErr);

}

static long strlen(char *p) Il Private C string length
routine

char *str = p+1;

hile (* ;
\r'éufni 8;;3])(&8”));

FILTER VARIATIONS

Often, a set of related filtered resource types have related structures.
In this case, you will find that converting each resource into and out of
its temporary format uses the same or similar algorithms.

For instance, in the previous example of a filter for the indexed C string
list (CST#') resource, you might want also to define an indexed Pascal
string (‘PST#’) resource. By including both resource types in the list of
types in the 'FLTR’s resource name, the filter can be responsible for
converting both. Only minor changes are needed to accomodate both
algorithms. Which resource type it should operate on is delivered to it
in the FilterRecord 's oType or cType field for the data, as in:

/* For each string, set index entry... */

for (i=0; i<=numStrings; i++) {
offset = stringOffset; / Install index entry 453
*/
offset++; [* On to next entry */

REsSORCERER UseErR MANUAL

454

