Peveloping Plug-ins in
Max/MSP for

pluggo

PRELIMINARY INFORMATION FOR PLUGGO 2.0

1186 Folsom Street

Cyding ‘74 eyclins
Sun Francism, CA 4103 USA ¢ ﬁ

tel(415) 621-5743 fox (415)621-6563
info@eyeling? 4.com wew.cyclng74.com

revision 3 of 14 Dec 1999

Copyright and Trademark Notices

pluggo, Plug-in Manager, and this manual are copyright © 1999-2000 Cycling '74. pluago uses
MAXplay, the runtime environment for Max, published by Opcode Systems, Inc. Max and
MAXplay are copyright © 1990-99 Opcode Systems, Inc. and IRCAM, I'Institut de Récherche
et Coordination Acoustique/Musique. pluggo also uses the runtime environment for MSP. MSP
is copyright © 1997-2000 Cycling '74—All rights reserved. Portions of MSP are based on Pd by
Miller Puckette, © 1997 The Regents of the University of California. MSP and Pd are based on
ideas in FTS, an advanced DSP platform © IRCAM.

pluggo, Plug-in Manager, and MSP are trademarks of Cycling '74. Max, Vision, Vision DSP, and
Studio Vision are trademarks of Opcode Systems, Inc. VST and Cubase are trademarks of
Steinberg Soft- und Hardware GmbH.

Credits
Runtime plug-in environment and Development Documentation: David Zicarelli

Plug-ins and Support Objects: jhno, Adam Schabtach, Joshua Kit Clayton, Les Stuck, Richard
Dudas, David Zicarelli

Graphic Design: jhno, Lilli Wessling, Adam Schabtach

pluggo Character: Richard Dudas

2 Developing Plug-ins for Pluggo

contents

INEFOTUCTION ...t e e e renee e 5
PIUg-IN DEVEIOPMENT ...t 5
How This Manual IS Organizedccocovveiiiiiiiiiicece e 5
ADOUL VST PIUG-INS 1.ttt s 6
PAFAIMELEIS ...ttt 6
(00 0 TSP 6
USEE INTEITACES ...t bbbttt e eneas 7
How the Runtime Plug-in Environment Worksc.cccoovveveiccnic i 10
What Plug-ins Can and Cant D0.........cccccviiiiiiiiiisieeese e 11
TUEOHIAL PL ..ottt et ne e 13
Plug-in INPUts aNd OULPULScvovrveeiiiricieiissiee et 13
Defining PIUg-iN Parameters..........covieirisieriseiseiesiee e s 14
TUBOTIAI P2 ...t 17
Improving the USer EXPEIIENCEccccvieiieiiiieseeeese e s 17
MaKing EffeCt PrOgramS.ccoiiiiiiiiiiiiesies et e 17
Adding Descriptive Information to Parameters..........cccoovevvievereieieciesesesiee e 19
Adding aPlug-in ADOUL BOXc.cviiiiiiii i 20
TUEOHIAI P3 ..ttt ene e 23
The Wonders of Modulated Interpolating Delay Lines...........ccoveevreivrniensiernennnnns 23
APIUg-IN User INterface iNn MaX.........covvveerieieiseieeieseses e e 24
TUBOTIAI P ...t 27
Collections Of PArameters.........ccvci i e 27
TUEOHIAE PD ..ttt ne e 30
Parameter MOAUIATIONccvoveiieiceicees e 30
The plugmOd ODJECTceiieiiee e 30
Generating Modulation INfOrmation ... 32
TULOTIAI PG ... s 34
Utilizing Host Syncronization INformation ..o 34
TUEOHIAL P7 ..ttt ne s 35
AUAIO RALE PAN ... sttt 35
TULOTIAI P8 ... 36

Developing Plug-ins for Pluggo 3

contents

A Really SIMple SYNTNESIZENcciiiiieisee e 36
TULOTIAI PO ..t be e 37
A MIDI PIOCESSON ...ttt ettt sb b e 37
TUEOMIAL PLO 1.t nere s 38
1/ o] 1o SRS SR PR SSPP 38
CONCIUSION ...ttt bbbttt 38
PIUGMAKET ...t nne s 39
INEFOAUCTION....ee e ettt 39
USING PIUGMAKET ... 39
PlUG-TN INAIMES ...t 39
PlUGMEKET.NOSTID ... 39
0] 0] 1< £SO SSRSOPRN 40
PIUGCONTIG ..ttt rere e 40
PIUGIN™ oot ettt n et et 47
PIUGMITIIN 1.ttt sn e re s enis 48
PIUGMITIOUL ... et 49
01 0T .10 o SRS 50
PIUGMOTPR 1. ettt r e re s enis 52
PIUGMUILIPATAM ...t et ne e 55
PIUGOUL™. .ottt ettt e et e et e et e e r s et ne e ne s 57
PIUGPNASOI ... e 58
PIUGEECRIVE™ ...ttt ettt ettt e et et e st b e st et ene st e 59
PIUGSENA™ ...ttt ettt ettt e et et e et e e aeneneere e 60
0100y (0] USSR 61
PIUGSYNIC ™ vttt ettt e bt et e ettt e et et e a e e b e rene st renas 62
010 L RSP 64
0] 0 I PP U RS STURPRTPP 66
0101 =] 1] oL USSR UR TR RPTPT 69
PPLITIE ..ttt bttt ettt 70
CONVENTIONS ...veeveeieie ettt re et s b e e e e be e sbeesnreenreesbeesreereens 71
PIUGGOSYNC .ttt bbbtk 71
PIUGGOBUS ...ttt bbbt 72
RUNTIME ISSUBS ...ttt sttt 74

4 Developing Plug-ins for Pluggo

contents

User Interface LIMItAtioNS..........ccovceiiiiiiiieieesee e 74
AUAIO PTOCESSING ...vevvvieietiieteietests ettt ss et a st e et e et se s e sesne e snene e 74
INIEAHZATION ... et r e 74
The MaX WINAOWc.oviiiiiiiicecee e e 75
MUILIPIE PIUG-TN TSSUES . vveeieveicieicteee et s 75
Priority LEVEI CONCEIMS.c.cviviicieiciee ettt 75
DiscontinUOUS DSP NETWOIKSc.coveviiiieiieesieesies et 77
0T] 11103 1) 78
ADPPENTIX A <o 79
ODjJECtS NOT INCIUAEA ... 79
External Object Support Functions Not Available ..., 79
INOBX 1t 81

Developing Plug-ins for Pluggo 5

Introduction

Plug-in Development

This manual describes how to use the audio plug-in construction tools in Max/MSP. These
tools consist of nine Max/MSP objects, an application called Plugmaker, and a shell, which we
call pluggo that loads plug-ins built in Max/MSP and creates an interface for them that appears to
a host audio program as an audio plug-in. In this manual, we refer to the pluggo shell as the
runtime plug-in environment and the audio program that can make use of pluggo as the host mixer
or host sequencer.

pluggo can be downloaded from the Cycling '74 web site www.cycling74.com. When
downloading pluggo, you need to choose the Pluggo Installer for Max/MSP users, which installs
the special plug-in construction objects into your Max folder (as well as the development
tutorials and other materials). You’ll also need a host sequencer application for testing your
plug-in, because the runtime plug-in environment does not run inside Max/MSP. That’s right:
even though MSP has a vst ~ object, this object cannot currently load VST plug-ins made with
Max/MSP. Demo versions of the popular sequencing applications Vision, Cubase, Logic Audio,
and Digital Performer can be obtained—uwith varying degrees of difficulty—from their
publishers and distributors. These demo versions make ideal platforms for testing because they
don’t disable the Macintosh debugger Macsbug. So if you manage to create a plug-in that
crashes, you might be able to get some idea of what’s going on.

The runtime plug-in environment currently runs under MAS and VST host environments and
provides a platform-independence so Max/MSP developers may write plug-ins that work under
all supported environments. Support for other real-time audio plug-in host environments is
currently under consideration.

How This Manual Is Organized

This manual assumes familiarity with pluggo as well as Max/MSP. Before developing your own
plug-ins, we think it’s useful to see what has already been done so if you haven’t tried out the
collection of plug-ins included with pluggo, we recommend doing so before reading any further.

After this brief introductory chapter, we present five Tutorials that will serve as an introduction
to developing plug-ins using Max/MSP. These tutorials cover the process of constructing Max
patches that will work as plug-ins, and they assume you’re familiar with programming in Max
and MSP. After the tutorials, we briefly discuss the Plugmaker application that transforms Max
patcher files into VST plug-in files.

Next, you'll find Reference Pages that cover the plug-in construction objects, organized in a
format that will be familiar to readers of the Max and MSP manuals. These reference pages are
supplemented with object help files that are found in the plug-in development materials folder
associated with this manual.

Following the reference pages, we present information about two evolving “conventions”
adopted by the plug-ins included with pluggo, a synchronization scheme called PluggoSync and
an inter plug-in audio communication scheme called the PluggoBus. By conforming to these

6 Developing Plug-ins for Pluggo

Introduction

standards, you can synchronize your plug-in to the tempo of the music and allow it to send and
receive audio signals.

The last chapter of the manual describes differences between Max and the runtime plug-in
environment that you should take into account when designing your plug-in patcher.

About VST Plug-ins

The plug-in development model most closely follows the VST plug-in specification developed
by Steinberg Soft- und Hardware GmbH. It is available from the Steinberg web site
www.steinberg.net or www.steinberg.de. You won’t need to know anything about the
specification in order to develop plug-ins using Max/MSP, but it’s helpful to be familiar with a
few basic elements of plug-in jargon. VST defines a standard for plug-ins that process audio in
real time. Most of the programs that currently host VST plug-ins are audio sequencers similar to
Cubase, the first program that hosted the plug-ins, although this may not necessarily be true in
the future.

VST plug-ins must have a process routine. This is the DSP code that transforms boring audio on
input into audio output so wonderful you think people will pay for it. You can “construct” this
routine using MSP audio objects, along with two special objects (plugin ~ and plugout ~) that
define the audio signal interface between your MSP patch and the plug-in’s host. We’'ll talk
more about plugin ~ and plugout ~ in the first Tutorial chapter.

Parameters

Most VST plug-ins also have parameters. These are named values that the host mixer can change
via automation or with its default interface that assigns a slider or knob to each parameter. If you
make a VST plug-in that opens its own edit window, it is responsible for displaying and editing
any parameters it has. Parameters are changed while the audio processing routine is running, so
you get immediate feedback on the effect of a parameter change. When a VST plug-in loads, it
tells the host mixer how many parameters it has. This value cannot change during the life of a

plug-in.
Programs

VST plug-ins can store a collection of parameters called a program (we’ll refer to these as effect
programs in this manual to distinguish them from the many other meanings of the word
“program”). Among popular host sequencer/mixer environments, Cubase and Vision provide
users with the ability to use effect programs, but Logic Audio did not until version 4.1. Digital
Performer versions 2.6 and higher (using MAS 2.0) allow for presets that are stored outside of
the plug-in, unlike VST effect programs whose contents is the plug-in’s responsibility.

When a VST plug-in loads, it tells the host mixer how many effect programs it has. The plug-in
itself is responsible for storing its own effect programs, and all of the plug-in’s effect programs
must have the same number of parameters. In MAS, the effect programs are exported to the host
when the plug-in loads, and the host stores the information. Effect programs also have names.
Asyou’ll see in Tutorial P2, the plugconfig object allows you to store named effect programs full

Developing Plug-ins for Pluggo 7

Introduction

of parameter values within your patcher. This provides a way give the user a taste of what your
plug-in can do. There is no way for a user to modify permanently the contents of the effect
program data within a plug-in. However, the parameter changes of all effect programs are
typically saved in host sequencer documents. What’s more, most hosts have the ability to load
and save files of effect programs.

When a parameter in a plug-in is changed, the change is stored directly into the current effect
program. Unlike a typical MIDI synth or effects unit, there is no “edit buffer.” At least that’s the
way the original VST plug-ins behaved, so that’s now what users expect. In any case, the storage
and recall of programs and parameters is not something you need to worry about. The runtime
plug-in environment handles it all for you as long as you use the parameter definition objects pp
and plugmultiparam . In MAS, there is effectively an edit buffer the host writes over it when new
effect programs are chosen.

User Interfaces

The plug-in developer has two choices regarding a user interface. You can count on the host
mixer to display your parameters for you (using what we call the default interface), or you can
create your own custom edit window. Below you can see a picture of a typical default interface
for a VST plug-in—this one is from Vision.

[0 ==——— opCHORLS for Audin- 1 ="—"0a=H
Flug-In: opCHORUS | Channel: Audio-1 |
Template: j | Slot: 1 | |
Program: 1:|[Default [+ |
Dry et
Ly Tirne -
Feedback
Filter
LFOCepth
LFEQ Freq bt
SAEOUT (£ Opcode

8 Developing Plug-ins for Pluggo

Introduction

Here is an example of a plug-in from Steinberg that has its own editing window.

elle——1=

o

| 0.0000 I 05000
—

Clipback Volume

RO FUZZ

Developing Plug-ins for Pluggo 9

Introduction

You can go either route with the runtime plug-in environment, although all the plug-ins
included with pluggo—as well as the ones described in the Tutorials—use an edit window. If you
decide to go the edit window route, you have an additional choice with the runtime plug-in
environment: will you use the standard egg slider interface (also referred to in this manual as the
Parameters View)?

View (Parameters 2] Meter [In_]3] 3533000000
Parameter Min Max Walue

1. Wet Level , _ ‘ - , 0.5000

2. Dry Lewvel ,‘ - - - - 0.0000

3. Averaging Delay ‘- 100.0000 ms
4. Delay Range —— * %10

5. Averaging Mode — ‘- F s

6. Mult/Divide Facto.. -.‘." 100.0000

7. Scaling Mode -\‘ — multiply

5. Input Drive —n‘: — 4.3200

9. Input Curve -‘ — 2.0000

10 Developing Plug-ins for Pluggo

Introduction

Or will you create your user interface in Max?

[0 =—————LF0for Audio-1

=———H
__1

A e S o

off Mo Cornection |
off Mo Connection |

The Tutorials will show you examples of both types of user interface. And by the way, it’s
possible to make a plug-in with both an egg slider interface and a custom Max interface. Users
can switch between the two interfaces using the View menu.

How the Runtime Plug-in Environment Works

The runtime plug-in environment has two big pieces and a lot of small pieces. The small piece is
a Macintosh “code resource” while the two big pieces are shared libraries called MAXplugLib
and Max Audio Library for Plugins. You can think of the former as Max (or MAXplay) for plug-
ins, and the latter as MSP for plug-ins. The MAXplugLib file also contains the user interface
tools to display egg sliders for plug-in parameters as well as the interface linking a Max patcher
to the host mixer environment. It’s likely that there will be many revisions of MAXplugLib over
the course of the pluggo life cycle, but there will probably be relatively few revisions of Max Audio
Library for Plugins.

The Pluggo plug-in shows a standard file dialog when it is inserted. This plug-in is essential for
development when testing with VST hosts. Among the files that Pluggo can open are Max
patcher and collective files, so Pluggoallows you to test your patcher directly within the host
sequencer. When you’ve finished developing your patcher and you want to make it into VST
plug-in that will open when you choose its name from the host mixer’s effect menu, you use the
Plugmaker application.

Developing Plug-ins for Pluggo 11

Introduction

A plug-in made with Plugmaker contains the same code resource as the Pluggo plug-in
(although it has been renamed from “Pluggo” to the name of the patcher or collective file that
was given to Plugmaker). This resource is of the type thata VST plug-in host expects to load—
it’s Macintosh resource code is ‘aEff’ (for “audio effect”). In a Plugmade plug-in, the code in the
aEff resource notices a patcher in the file and tells the runtime environment to load the patcher
inside the plug-in file rather than ask the user for afile.

When testing under MAS, it is not necessary to use the Pluggo plug-in to load Max patcher files.
Instead, you can simply drag these files to the VstPlugins folder found within the MAS client
application’s folder. Then either restart the client application, or, in Digital Performer, choose
MIDI Only from the Audio System submenu of the Basics menu. Then choose MOTU Audio
System from this same menu, and the list of plug-ins will be updated.

You'll find that most everything about the runtime behavior of your plug-in patcher within Max
will carry over into the plug-in environment. Your patcher interface will operate as you expect it
to and most (but not all, see Appendix A) Max objects and capabilities are available to you.
However, a plug-in is a guest in someone else’s house, and there are definite restrictions in the
area of user interface, file loading, and initialization that are mandated by the need to adhere to
the VST standard.

One major difference between a patcher running in Max/MSP and one running in the runtime
plug-in environment is that while you will probably want to maintain the individuality of your
plug-in patcher, all the plug-in patchers are loaded within the same runtime space. As an
example, if you want to send control data between one plug-in and another, you can use the
send and receive objects. But if you want to use these objects and not make your data
potentially available to other plug-ins, you’ll have to use special symbols that create private
communication channels within a plug-in patcher.

A major difference between MSP within Max and the runtime plug-in environment is that each
plug-in has its own DSP chain—the sequence of calls made for each block of samples that define
the signal processing algorithm. By contrast, in Max, all signal objects in all patchers currently in
memory share a single DSP chain. One effect of this is that send ~ and receive ~ do not work to
send audio between plug-ins. Instead, you have to use the new plugsend ~ and plugreceive ~
objects.

Please refer to the Runtime Issues chapter for more detailed information on these and other
differences between Max and the runtime plug-in environment.

What Plug-ins Can and Can’t Do

An audio plug-in has a highly restricted world view. It is passed input and output vectors of
samples, and must process the input vectors and copy the result to the output vectors. Typically,
plug-ins are used for filters, compressors, delays, and reverbs. Users probably expect that what
you develop will be used to enhance some other source material that’s already been recorded, so
it's unclear whether sequencer users are going to appreciate a plug-in that ignores its input,
producing unrelated output. But you may not care what others will appreciate. The VST 2.0 and

12 Developing Plug-ins for Pluggo

Introduction

MAS standards allow plug-ins that can receive MIDI information and produce audio output
from it (i.e., synthesizers). In Cubase 4.1, these plug-ins are referred to as VST Instruments.

But if audio is not what you want to process, it's OK to make a plug-in that contains no MSP
signal objects at all. When the run-time plug-in environment notices there is no DSP chain after
loading a patcher, it runs a default processing routine that simply echoes (or adds) the audio
input to the audio output. You’ll see why you would want to make a non-audio effect in Tutorial
P5.

Among others, the MIDI objectsin Max are not available in the runtime plug-in environment.
InVST 2.0and MAS, MIDI input and output to and from the host is possible and the special
objects plugmidiin and plugmidiout are used for this purpose. These objects do nothingina
host environment not capable of sending MIDI to and from plug-ins. Appendix A lists the
complete set of kernel objects and support functions that are not supported.

Another major restriction of the runtime plug-in environment is that since the VST 1.0

standard only allows a single fixed-size window for the user interface, opening more than one
window is not allowed. It’s even dangerous to open a dialog box. The environment does support
scrolling the patcher window to set positions, called views, that the user can select using either a
pop-up menu above the interface or via some control within the interface itself.

Developing Plug-ins for Pluggo 13

Tutorial P1 A plug-in with an egg slider interface

In this tutorial, we will look at a simple delay line that uses the runtime plug-in environment’s
Parameters view in its edit window.

Open the file called Tutorial P1 in your plug-in development materials folder.

Plug-in Inputs and Outputs

Let’s look first at the part of the patcher labeled Signal Network. Turn on the audio by clicking
on the check box near the dac~ object. The patch will echo MSP’s audio input to its output,
adding a copy of the input signal delayed by 100 milliseconds.

Signal Metwaork

ECEl

L

Em plug-in audio input

i

|ta|:|1'n"’ 1000 |
|ta|:u:-ut” 100 |

5

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
L]

-.
FY
; K
.i"{ “"-.
/ :
4
/oA
|*“’|:| | |*"’ 0.5 |
¥ A

As you examine the signal network, you’ll notice two new objects, plugin ~ and plugout ~. If
you're suspicious that these two objects appear to be doing absolutely nothing to the sound,
your suspicions are correct. plugin ~ and plugout ~ have a dual personality. In Max, they merely
echo their audio input to their output. But within the runtime plug-in environment, plugin ~
serves to define the source of input to the MSP signal network, while plugout ~ defines the
output of the MSP signal network that will be fed back to the host mixer.

Why were these new objects created instead of using adc ~ to define the plug-in’s input and dac~
to define the plug-in’s output? Because we anticipated that you’ll want to try your plug-ins with
avariety of test signals in addition to the audio input to the computer. If adc~ were the plug-in’s
input and you wanted to develop the plug-in using a file played by an sfplay ~ object, there
would be no way to run the same patch within both Max and the runtime plug-in environment.
You can feed any signal to plugin ~ and hear it processed in Max, but when you load the plug-in

14 Developing Plug-ins for Pluggo

A plug-in with an egg slider interface Tutorial P1

into a host mixer application, the signal will not be audible because plugin ~ ignores its input
when loaded into the runtime plug-in environment.

plugin ~ and plugout ~ have two inlets and outlets, representing the left and right plug-in inputs
and outputs. Currently, all Max/MSP plug-ins within the runtime environment are stereo, but
they can be used in a mono context. This may change in the future—plugin ~ and plugout ~
might acquire the ability to have more inputs, or optionally work as mono. For the moment, if
you want your plug-in to be mono only, take both inputs from plugin ~ and add them together
at the start of the processing chain, as we’ve done in this patch. You may also want to multiply
the combined signal by 0.5 so that your input isn’t doubled in volume.

plug-in audio input

-
tapin™ 1000

e

i

Defining Plug-in Parameters

Now look at the part of the tutorial patch labeled Parameter Definition. Here you see several pp
objects. pp is short for plug-in parameter. In developing plug-ins, you’ll be using a lot of these
objects, so we’ve spared you the inconvenience of having to type in along object name (pp used
to be called plugparam).

FParameter Definition

lpp 1 Gain 0.2.| | [pp 2 Delay 0. 1000 mz |
|
§D. | [0 |

pp & Feedback

Each pp object defines the parameter number, name, minimum, maximum, and the units to be
displayed next to the parameter value in the Parameters view of the plug-in edit window. For
instance, look at the top left pp object shown above, pp 1 Gain 0. 2.. The firstargument, 1, says
this is parameter number 1. The second argument, Gain, says that the parameter’s name is Gain.
The third argument, 0., says that the minimum value of the parameter is 0. Note that 0 has a
decimal point after it, indicating it’s been entered as a float. This is important, since the type of
the minimum value sets the type of the parameter values. If the value had been 0 without a
decimal point, only integers would be output from the pp object. The fourth argument, 2., sets
the maximum value of the parameter to 2. Knowing how this pp object works, you can probably
determine the details of the parameters defined by the other pp objects.

Now let’s look at how this pp object is connected to other objects. First, you’ll notice a curious
circular connection between the float number box and the pp object. This is purely for the

Developing Plug-ins for Pluggo 15

Tutorial P1 A plug-in with an egg slider interface

convenience of the plug-in developer for creating effect programs. The user of this plug-in will
never see the number boxes. By connecting the two objects together in this way, the number box
always reflects the state of the parameter, and in turn, the parameter always stores the value
entered into the number box. Those of you with extensive Max experience might suspect that
this would create a feedback loop and result in a stack overflow. However, the pp object has an
internal feedback loop avoidance mechanism—something that perhaps other Max objects
should have had long ago—that allows you to connect objects to it in this circular fashion.

But what makes this pp object actually do something is not this connection with the number
box, but its eventual connection to something in the signal network. In this case, we send the
output of the number box (which echoes its input from pp) to the *~ object, where it serves to
scale the overall output before being sent to plugout ~.

[pp 1 Gain0. 2 |

tapout™ 100
—_— 0.

The other two pp objects serve different functions. pp 2 controls the delay time—its output is
connected to the tapout ~ object. pp 3 is connected to another *~, serving as an internal gain
control to determine how much of the output signal is fed back to the delay line input.

Unless the special keyword hidden appears in a pp object, there will be one egg slider for each pp
object in the patcher. We’ve chosen not to hide any of our parameters here—you’ll see an
example of a hidden parameter in Tutorial P5.

Now let’s quit Max and open the Tutorial P1 patcher—using the Pluggo plug-in—within your
favorite sequencer.

It’s possible to run the sequencer and Max at the same time, but this requires that you
have both a lot of memory and an audio card. You can assign one application to use
the Sound Manager and the other to talk directly to the audio card. If you only have
the Sound Manager available to you, one of the programs will not be able to access the
audio input and may fail to initialize properly. In these tutorials, we assume that you’ll
have to keep quitting and restarting Max and your sequencer—if you can avoid it
using the scheme suggested above, you can ignore the directions to quit and start up
each application.

16 Developing Plug-ins for Pluggo

A plug-in with an egg slider interface

Tutorial P1

After you select the Tutorial P1 patcher from Pluggo’s standard open file dialog, open the plug-

in’s edit window and you’ll see the following screen:

[1 =————= Pluggo: Tutorial P1 =|
View | Parameters | | Meter [In_ 3] X
Parameter Min Max ¥alue
1.Gain , -‘ 0.4500
2. Delay - " S50.0000 ms
3. Feedback — 0.2700

Test out the plug-in to verify that it does in fact work as a delay.

Then quit your sequencer and launch Max so you can examine the

next tutorial.

Developing Plug-ins for Pluggo

17

Tutorial P2 Enchancing the plug-in interface

Improving the User Experience

In this tutorial, we’ll make some minor improvements to our delay line plug-in and introduce
the somewhat hairy plugconfig object. We're going to make the following enhancements. First
we want to add a collection of built-in effect programsto our delay to demonstrate the wide
range of lovely effects it is capable of producing. Second, we want to add hints to our egg sliders
describing in more detail what the parameters do. These hints will be visible when the user
moves the mouse over a slider, as shown below.

2. Delay - .‘—* ; - 2200000 ms

Sets the delay time in milliseconds

Finally, we want to take advantage of the ability to brag about our plug-in and add a nice picture
as an about box. Doing this will get us into the use of collectives and the Plugmaker application
so we can package up our patcherasa VST plug-in file.

Making Effect Programs

Open the Tutorial P2 patcher. Examine the new section of the patcher labeled Programs.

Prograrms
Store Program Murnber Recall Prograr Murnber :
Store! qu"_ zet $1

capture $1

plugeonfig

Here you’ll see a new object called plugconfig , plus message boxes containing the messages
capture and recall. Double-click on the plugconfig object and a text window appears with a
somewhat intimidating-looking scriptin it.

#C useviews 111 1;

#C numprograms 8;

#C preempt 1,

#C sigvschange 1;

#C sigvsdefault 32;

#C autosize;

#C defaultview Interface 0 0 0O;

#C dragscroll 1;

#C noinfo;

#C setprogram 1 ‘Program 1' 0 0.25 0.1 0.;

18 Developing Plug-ins for Pluggo

Enchancing the plug-in interface Tutorial P2

#C setprogram 2 ‘Program 2’ 0 0.25 0.25 0.39;
#C setprogram 3 ‘Program 3’ 0 0.25 0.5 0.18;
#C uniqueid 128 157 227,

#C initialpgm 1,

The script is used to configure the plug-in’s behavior within the runtime environment. The only
thing we’re interested in here at the moment are the lines that start with the setprogram message.
These messages allow you to define presets that “ship” with your plug-in to demonstrate how
wonderful itis. But it would be a pain if you had to type the presets in by hand, especially since
all the values need to be entered between 0 and 1, regardless of the range the associated pp
object. Fortunately, you don’t; there’s a much slicker way to do it. But before we close the script,
look at the top line that defines the number of effect programs the plug-in will contain. By
default, this number is a very generous 64. We’ve reduced it to 8 here.

One other important plugconfig script message when defining preset programs is initialpgm. In
the vast majority of cases, you’ll want to load the first program on startup, so give it in argument
of 1. This message is not in a plugconfig script by default; you’ll have to add it manually.

Now close the plugconfig text window and return to examining the patcher. If you change
anything in the text window, you’ll be asked if you want to store your changes back into the
plugconfig object when you close the window. Avoid saving the window as a text file—this will
not to you any good—ijust close the window and, if there are changes, click Save and the script
will be updated.

Turn on the audio and, using some type of audio input as a test source, set the number boxes
below each pp object to settings that you like. Move the number box labeled Store Program
Number to 4. Now click on the button labeled Store! and the current settings are saved inside
the plugconfig object. You can verify this by double-clicking on the plugconfig objectand
looking at the script. You’'ll see a setprogram message with a program name of Program 4. You
can change this name to something more descriptive if you like, or leave itas is.

Now that your brilliant settings have been safely tucked away for posterity, try out one of the
programs that was already stored in the plugconfig object. Move the number box labeled Recall
Programto 1, 2, and 3. You can then return to the settings you stored by moving the number
box to 4. If you want to tweak the settings further, make adjustments to the number boxes below
the pp objects, then click the Store! button when you’re happy.

The capture message to plugconfig interrogates all pp objects in your patcher (and its
subpatchers) for their current values, then creates a setprogram message in the object’s script
with all of these values. By using the float number box and pp object connected in a loop, you
are saving the values you are using to affect the DSP algorithm inside the pp object where
plugconfig can get them.

The recall message to plugconfig goes the other way—given a setprogram message inside the
plugconfig script, it passes the values back to the pp objects in your patcher. You’ll find these
two messages invaluable for developing effect programs that you want to include in your plug-
in.

Developing Plug-ins for Pluggo 19

Tutorial P2 Enchancing the plug-in interface

Adding Descriptive Information to Parameters

You can add up to two lines of descriptive hint information to each pp object in your plug-in
patcher. The information is displayed when the user moves the mouse over the egg slider
associated with the parameter in the plug-in edit window.

To add the hintinformation, unlock the patcher window. Then select one of the pp objects (for
example, the pp 1 Gain object) and choose Get Info... from the Max menu. The window shown
below will appear.

||:-|:- 1 Gain 0. 2. !

Describe Gain

Aets the overall gain ofthe delaved signal

Eancel] || OK]

If you think the description here is adequate, feel free to leave it alone. On the other hand, if you
can think of something better to say, type it in. When you're finished, click OK.

20 Developing Plug-ins for Pluggo

Enchancing the plug-in interface Tutorial P2

Adding a Plug-in About Box

You may have noticed when using pluggo that all of the included plug-ins have either text or
picture views that provide information about the author and/or function of the effect. For
example, the LFO plug-in displays the following picture when you choose LFO Info from the
plug-in edit window’s View menu.

[0 =——FPluggo: Ll =—-—H

View | LFOInfo | 2]

lFu |:|':,- jhl'l:- ht 1] Jherarar ginus.comd~aar

We’ve provided a picture for you to use as an about box. It’s in a file called P2.pict in the plug-in
development materials folder. If you want to see what it looks like, double-click on this file in the
Finder and it will be displayed in SimpleText.

In order to link this picture into our plug-in, we first need to add a reference to it in our
plugconfig script. At the end of the script, add the following line:

#C infopict P2.pict;

We've already specified with the useviews message near the top of the script that we want a plug-
in info view. But until we added the infopict message, there was no information to display, so the
view was not listed in the View pop-up menu in the plug-in edit window.

Close the text window and click Save to store the changes you made to the script.

Choose Save from Max’s file menu to save the Tutorial P2 patcher with your changes. Then
choose Save As Collective... from the File menu. You’ll see the collective save dialog with the
default script. We need to include the file P2.pict in our collective. An easy way to do this is to
click Include File... and select P2.pict from the open file dialog. The collective script will now
look something like this

open thispatcher
include Disk:Pluggo Stuff:Pluggo Development:Tutorials:P2.pict

Developing Plug-ins for Pluggo 21

Tutorial P2 Enchancing the plug-in interface

(The exact path of the file P2.pict will of course be different for your computer.)
Click Make and the collective will be created. Call it P2.clct.
Now quit Max. In the Finder, drag the file P2.clct you just created onto the Plugmaker icon.

A new VST plug-in file will be created called P2.clct.pi in the same directory as P2.clct. You can
move this file into your sequencer’s VstPlugins folder and it will be listed in the effect menu the
next time the sequencer launches, or you can just open it where it is with the Pluggo plug-in.

Now let’s look at the fruit of our labors. Launch your sequencer and insert the P2.clct plug-in.
Openits edit window. First, notice the lovely hints when you move over the egg sliders.

The plug-in file is listed in the sequencer’s menu as P2.clct even though the filename is
P2.clct.pi. When displaying a plug-in’s name, sequencers use the name associated
with the aEff resource, not the filename. The Plugmaker application names the aEff
based on the name of its input file. You can verify this by looking at the aEff resource
inside the file generated by Plugmaker in ResEdit.

Now, choose P2.clct info from the View menu. There’s the lovely picture.

[=am8————————Prlritt==—m—H

wigw [PZelctinfo [#] Meter [In 2] 3

{ 'fre’f'rfr.-'rf‘.‘rrfj' y 2

for those times whenyou really need it to arrive later

uk

Finally, try out the effect programs. Return to the Parameters view.

22 Developing Plug-ins for Pluggo

Enchancing the plug-in interface Tutorial P2

If you’re using Vision or Cubase (or most other host applications), you can switch programs
using the application’s interface. If you’re using Logic Audio, you will need to use the technique
of holding down the command key and clicking somewhere in the egg slider interface, which
will bring up a pop-up menu. One of the items in the menu is Copy All From Program. Choose
some of the programs from the submenu.

Lndo Last Change

Randomize All 1. Program 1

Evolve All 2. Program 2

Randomize “AP3 Feedback” 3. Program 3

Evolve “AP3 Feedback” 4. Program 4
2 Program 5
6. Program 6
f.Program 7
8. Program 8

Developing Plug-ins for Pluggo 23

Tutorial P3 A plug-in with a Max interface

In this tutorial, we’ll expand upon the previous examples to examine a patcher that implements
a vibrato effect—also using a delay line—and has a Max patcher as an interface rather than
making use of egg sliders. You’'ll see that things get quite a bit messier as the Max patch attempts
to serve three functions simultaneously: signal network, parameter definition, and slick user
interface.

The Wonders of Modulated Interpolating Delay Lines

You can do a lot of fun things with a time-varying signal connected to the inlet of a tapout ~
object. In this example, we’ve connected a cycle ~ object to the input of tapout ~. The effect of
the oscillator on the delay line is a pitch-changing effect that sounds pretty much like vibrato.

Another feature of this plug-in is that it is fully stereo, unlike the patchers in the first two
tutorials. There are two tapout ~ objects, each of which is being modulated by the same cycle ~
object. In traditional jargon, the cycle ~ modulator is functioning as an LFO (low frequency
oscillator).

[adc™ |
H [

||:-1u-;|in"’ |

.

e 5 ,
: = rﬁ===§=====j §
: |ta|:-1n“" 1000 | tapin™ 1000 :
i — §
1 Dl =i —
I elay ModRate E
L Mod Depth I By IR :
H =t il i 5 i
1 e % ~
: 1! " R Mod Depth E
I A |
3 -, /{ 5 g H
:) LV E
; [tapout™ 100 | [tapout™ 100 | :
i ¢ et Lewvel E “Wet Lewel E
| : g
i = e g
; |
i : g ¢
H 1 g §
Dry Level § Dy Level
— : ; il
AT =_ I
turn audia = &
Tugout
anfaff in Max [elus El
[dac™ _1

A *~ scales the output of the cycle ~ oscillator so it is appropriate for controlling delay time. In
addition, a sig ~ object is used to offset the oscillator with a fixed delay time. If the base delay
time were 0, the delay time input to tapout ~ would go negative—and since tapout ~ would clip it

24 Developing Plug-ins for Pluggo

A plug-in with a Max interface Tutorial P3

to 0 (no negative delays allowed in this universe) the vibrato effect would be somewhat non-
standard. The *~ and sig ~ objects are by the patcher’s user interface and pp objects, giving the
user control over the signal scaling and offset. Specifically, the Left Depth and Right Depth pp
objects feed into the right inlets of *~ objects scaling the output of the cycle ~ object. These are
similar to the gain control parameters we saw in the first two tutorials, except in this case, the
signal whose gain we are controlling is not an audible one.

A Plug-in User Interface in Max

Feast your eyes upon the collection of sliders and number boxes in the region of the patcher
labeled Interface. It looks pretty nice until you unlock the patcher. Yikes!

iFararmeter definition | Epp = Left Mod Depth O EDJ

1
!pp & 'Fight Mod Depth™ 0. 20 _{
] .
EpEDelau . 1IIIIIIIII.mﬂ pp 1 “wWet Leve-]’III.EJ

—1

pp 4 ModRate 0. 10, Hﬂ

127, 127,

| ——— |

Notice the multiply and divide objects used between the wet and dry level sliders and the pp
objects. These are necessary because the sliders output only integers, so the range of values of the
sliders needs to be scaled so that it is appropriate for the signal network. This is something that
can be done automatically for you with the egg sliders in the Parameters view. With a Max
interface however, you’ll end up doing this translation yourself.

Developing Plug-ins for Pluggo 25

Tutorial P3 A plug-in with a Max interface

The user interface is restricted to a relatively small portion of the patcher window. In order to
display only this portion of the window when we use our plug-in, we need to turn once again to
the plugconfig object. It’s located just below the interface objects. Double-click the object to see
its script.

#C useviews 01 1 1;

#C numprograms 8;

#C preempt 1,

#C sigvschange 1;

#C sigvsdefault 32;

#C setsize 220 130;

#C defaultview Interface 550 220 0;

#C dragscroll 1;

#C noinfo;

#C setprogram 1 ‘Program 1' 0 0.232283 0.228346 0.103 0.1496 0.15 0.15;
#C setprogram 2 ‘Program 2’ 0 0.232283 0. 0.292 0.677165 0.05 0.05;

#C setprogram 3 ‘Program 3’ 0 0.232283 0.110236 0.143 0.07874 0.15 0.15;
#C uniqueid 128 221 227;

#C initialpgm 1;

There are three relevant messages here: useviews, setsize, and defaultview.

The useviews message has been set so that we will not be seeing the Parameters view and its egg
slider when we open this plug-in. Its arguments are 0 1 1 1—the first argument says whether the
Parameters view will be available or not. Note that we could have decided to make the
Parameters view available in addition to our Max interface view, but we chose to aim for
simplicity.

We've used the setsize message to determine the dimensions of our edit window. The setsize
message takes two arguments for width and height. Unless you have some kind of pixel
measuring tool, you may have to guess the width and height in pixels and refine them by trial
and error. Or, take a picture of the screen in Max using command-shift-3 and use a graphics
program that has a pixel ruler in it to make the measurements. Don’t forget that the setsize
message sets the size of the window including the 30 pixel area at the top where the View menu is
located, so you’ll want to add 30 to a pixel measurement you make of the height of the Max
interface.

The defaultview message allows you to set a pixel offset to the left and top edge of your plug-in’s
user interface. Again, you could use trial and error to come up with the values you see in the
script, but you can experiment with sending the plugconfig object the offset message, which
attempts to scroll the patcher window to the specified X and Y values. While this feature might
appear handy at first glance, it’s made somewhat awkward by the fact that you are scrolling the
interface that lets you change the scroll offset. If you measure the interface, remember to
subtract 30 to the Y offset in order to account for the View menu area at the top of the edit
window.

26 Developing Plug-ins for Pluggo

Tutorial P3

Close the script window and quit Max. Launch your sequencer and, using the Pluggo plug-in,

insert the Tutorial P3 patcher into your sequencer’s mixer. Open the plug-in edit window and
try out the interface.

A plug-in with a Max interface

[| = Tutorial P3for Internal (D L =—=—"=H
Plug-ln: Tutorial PE | Channel: Internal DL |
Template: j | Slot: 1 | |
Prograrm: M|F‘r‘-:-gr'am 1 |E|
View | Interface | %]
Mad Rate Left Mad Depth wet Dry
Lewel Lewel
] | [g
=low fast 4 little a lot |7
Celay Time Fight Mod Depth
o 1 [
short lang a little a lot 1-|

You might ask, given the somewhat tedious nature of building plug-in user interfaces out of

Max objects, why it wouldn’t be better to use the egg sliders wherever possible. This is probably

not a bad idea, although occasionally there are specific reasons to make an interface that

provides a greater variety of user interface elements than just sliders. We’ll see that clearly in the
next tutorial, which employs the multislider object.

Developing Plug-ins for Pluggo

27

Tutorial P4 Using multislider and plugmultiparam

Collections of Parameters

In this tutorial, we continue with our modulated delay line, but this time, we replace our simple
oscillator with a function that steps through a sequence of delay times. A ramp between the delay
times in the sequence creates a pitch shift effect. The patcher is similar in its structure to the
Cyclotron and Flange-o-tron effects included with Pluggo, which apply repeating sequences to
filter and flanger parameters.

The multislider object turns out to be an ideal object for setting a large number of similar
parameters, and there’s a plug-in parameter definition object that works with it called
plugmultiparam . Yes, the name is a mouthful compared to pp, but plugmultiparam does the
work of a lot of pp objects, so you'll probably not have to type its name very often.

Here’s how multislider and plugmultiparam are typically connected to each other.

[1
Eugmu]tiparam 1 u

The plugmultiparam object defines a collection of up to 256 parameters. The first argument sets
the index of the first parameter in the collection. The next argument sets the size of the
collection. Here we’ve set our size to 4, corresponding to four steps in the repeating sequence.

Even though the plugmultiparam object defines a collection of parameters, it’s possible that
only one parameter within the collection will change at a time. As an example, consider the case
where a single parameter in the collection is being automated within the host environment.
plugmultiparam tries to avoid sending a giant list message with its entire collection of
parameters whenever a single value changes. Instead, it uses the little-known select message to
the multislider object that allows a single slider value to be changed. The select message also
causes multislider to output its current set of values as a list.

Let’s examine how the list of values coming from the multislider are communicated to the delay
algorithm. Our goal is to use the line ~ object to feed a sort of “envelope” of target-time pairs to
the tapout ~ object. But we have only the four “target” values in the multislider , S0 we need to
insert millisecond values into the list output from the multislider . This requires a fair amount of
what some computer types call munging. It’s hard to give a precise definition of the word
munge, but it has something to do with taking a collection of data, messing with its innards, and
trying to put it back together without destroying its integrity.

28 Developing Plug-ins for Pluggo

Using multislider and plugmultiparam Tutorial P4

Our munging procedure makes use of the pack and unpack objects as shown below.

- -

iDelay Time Soale ;

pack 0.0.0.0,0,.0.0.0, |

ithiz iz the target-time list to pass to line™ |

The list we want to assemble and send to the line ~ object needs to contain a total of eight values
because line ~ expects a list of target-time pairs. We use the value of the Speed Scale parameter to
be the time component of the pairs. We also want to be able to scale the multislider ’s output,
which ranges between 0 and 1, to a larger range of values that represent delay times. This is
accomplished by multiplying the individual list values by the value of the Delay Time Scale
parameter as they come out of unpack before reassembling the enlarged list.

The Speed Scale parameter sends its value to the four slots in the pack object that immediately
follow the target values provided by the scaled list from the multislider .

When the line ~ object’s sequence has completed, it sends abang out its right outlet. We
retrigger the sequence using the newest values from the multislider .

Developing Plug-ins for Pluggo 29

Tutorial P4 Using multislider and plugmultiparam

Turn on the audio by checking the box above the dac~ object. Note that we’ve used a sine wave
rather than the audio input to the computer as the plug-in’s test signal. This will make the effect
of the patcher quite obvious. But perhaps not that obvious. At first you might think that the
steps of the sequence in the multislider represent pitches or transpositions, but they do not. It is
the direction of the transition between one step and the next that determines whether the pitch is
transposed up or down, as outlined in the diagram below.

/.

/

increasing delay
pitch lower ——

]) decreasing delay
increasing delay pitch higher
pitch lower

Why does moving the delay time continuously from one value to another produce
this pitch changing effect? One explanation of the use of modulating delay times for
pitch effects is found in Tutorial 27 of the MSP manual—the short answer is that these
modulations represent the same phenomenon as the Doppler effect except that they
happen inside your computer, not out on the highway.

Quit Max, launch your sequencer and, using the Pluggo plug-in, insert the Tutorial P4 patcher
into your sequencer’s mixer. Open the plug-in edit window and try out the interface.

View [Interface |

Celay Tirne Scale [274.9939

Speed Scale > T4 .99

"
w0

Output Lewvel I

As an exercise, modify Tutorial P4 to use the curve ~object and give it an additional parameter
for curve factor. One solution to this problem is found in the patcher file Tutorial P4 Solution.

30 Developing Plug-ins for Pluggo

Using multislider and plugmultiparam Tutorial P4

Parameter Modulation

In this tutorial, we’ll look at a patcher for a plug-in that doesn’t make or process sound at all.
Instead, it’s designed to change the parameter values of other plug-ins that handle sound. In
pluggo, these patchers are called Modulators, and you’ll find quite a number of them.

As you probably know, the basis of many audio effects is the way in which some aspect of the
sound processing changes over time. By applying some type of modulating gesture or function
to an effect parameter that was not originally thought to be something worth changingina
continuous way, you can expand the range of sonic results possible with many effects.

Open Tutorial P5. This patcher is a plug-in that uses a Max user interface for its edit window. It
uses the drunk object to create a random process that you can apply to a parameter of another
plug-in. Unlock the patcher, and focus on the object box in bright pink.

The plugmod Object

The key object needed to create patchers that change the parameters of other plug-ins in the
runtime environment is called plugmod . It provides the core functions you’ll need to create a
Modulator plug-in, but you have to build a few things around it.

First, notice that the left outlet of plugmod is connected to a menu object—this outlet will set
the menu object with a list of all the plug-ins and parameters that are currently loaded in the
runtime environment. plugmod updates this list every time you insert or delete a plug-in. The
only tricky thing is that the right outlet of the menu must be fed back into the plugmod object’s
left outlet. As you might remember, the right outlet of the menu object only functions if the
Evaluate Item Text box is checked in its Get Info... dialog box, and this box is unchecked by
default. While you’re looking at the Get Info... dialog for the menu object, increase the
maximum number of menu items to something like 256—you never know how many plug-ins
and parameters will be around at one time, and you should be ready for a lot of them.

If you find that you can’t get your plugmod plug-in to connect to a parameter when you choose
it from the pop-up menu, verify that you’ve configured your menu object in the same way as
shown here.

Fill Me With Flug-inz |

-7

The pop-up menu used for assigning the modulation data to plug-in parameters
necessitates that any Modulator plug-in have a Max-based interface, at least for the
purpose of displaying the pop-up menu. You could use egg sliders for everything else.

Developing Plug-ins for Pluggo 31

Tutorial P4 Using multislider and plugmultiparam

Notice the two pp objects located below and to the right of the plugmod object. Thesepp
objects are used for saving the connections between the plugmod object and the other plug-in
and parameter the user has chosen for it to modulate. That way, when you save a document with
modulation connections referencing other plug-ins in your host environment, the connections
are preserved. And since the connection information is saved in the plug-in’s parameters, the
user can store and recall different modulator assignments using effect programs.

g:n 2 hidden fixed F']uginllndﬂ

m:n 1 hidden fixed Paramcndﬂ

The two pp objects contain some new arguments we haven’t seen before. The hidden argument
means that the parameter defined in a pp object won’t show up as an egg slider in an edit
window. That’s not an issue here, since this plug-in won’t have an egg slider interface. More
importantly for our purposes, hidden pp objects don’t display their parameter names in the list
of plug-ins and parameters generated by the plugmod object. That’s important in this case
because if the user were able to modulate the parameters that save the plug-in and parameter of
the current modulation connection, the connection would immediately be broken. The other
new argument in these two pp objects is fixed. The name is a little misleading, perhaps
“protected” might have been a better choice. A fixed pp object will not be affected by the global
randomization menu commands available when the user command-clicks in the plug-in edit
window. Again, this is important because it allows the user to randomize the settings of this
Modulator plug-in without affecting what parameter and plug-in are being modulated. Other
parameters appropriate for having the fixed keyword are overall gain parameters. Usually,
randomizing these parameters is at best uninteresting and at worse simply irritating.

The two pp objects need to be tied to specific inlets and outlets of the plugmod object. The
fourth inlet and second outlet of plugmod handle what’s called the plug-in or patcher code. This
isa code generated from a plug-in identifier that you can set in the plugconfig object with the
uniqueid message. If you don’t have a plugconfig object, an identifier is constructed based on
the name of your plug-in. The code is translated into a floating point number between O and 1,
perfect for storage in a VST parameter. The fifth inlet and third outlet of the plugmod object
handle a parameter code—again a floating-point number between 0 and 1 that is resolved into a
parameter number by the plugmod object.

32 Developing Plug-ins for Pluggo

Using multislider and plugmultiparam Tutorial P4

Generating Modulation Information

Now that we’ve managed to get through the required overhead associated with the plugmod
object, lets examine how we actually do crazy things to the parameters of some unsuspecting

plug-in.

Toadbang

pp & Bange 0. 1,

...

...

Eregtrict to allowable modulator :
Erange before sending to plugrmod

In addition to the two parameters used for saving the modulation connection, the Tutorial P5
patcher contains three additional parameters that configure the random process used to
generate modulation data. The Interval pp object just sets the interval of a metro object that is
sending a bang to the drunk object. The Step Size pp object controls the size of the jumps the
drunk object isallowed to make. A larger Step Size will produce more discontinuities in the
drunk output. Finally, the Minimum and Range parameters let the user adjust the range over
which the drunk object output produces values.

The plugmod object has three inlets that can be used for modulation data. In this tutorial, we’re
only concerned with the left inlet, where incoming data simply sets the value of the parameter.
The second inlet takes incoming number and offsets the current value of the modulated
parameter, and the third inlet scales the current value of the modulated parameter by the
incoming number.

It's important to note that regardless of the actual range of a parameter being modulated, the
number sent to the left inlet of plugmod must be within the 0to 1 range. 1 will represent the
maximum value of the parameter, and 0 will represent the minimum value of the parameter. As
an example, suppose we choose to modulate an LFO Speed parameter that ranges from 3 Hz to
20 Hz. Sending a 0 into the left inlet of plugmod will set the LFO Speed parameter to 3. Sending
avalue of 0.5 into the left inlet of plugmod will set the parameter to the middle of its range, or
11.5. And sending a value of 1.0 into the left inlet of plugmod will set the parameter to its
maximum value of 20.

Developing Plug-ins for Pluggo 33

Tutorial P4

Using multislider and plugmultiparam

The output of drunk , which is an integer between 0 and 127, is scaled so that it falls between 0
and 1. The Minimum and Range parameters provide further scaling along with an offset to
constrain the final output range of the random process to a subset of the 0 to 1 range. We use a
slider to give some indication to the user what the process is doing.

Unfortunately, it’s not possible to test aplugmod connection within Max. You’ll need to load
the patcher into the runtime environment along with another plug-in created with Max/MSP.
Or, you can also use the Pluggo plug-in to open any VST plug-in. Once hosted by Pluggo, the
VST plug-in’s parameters become available in the pop-up menu generated by plugmod .

In order to test this patcher, quit Max and launch your sequencer, inserting the Pluggo plug-in
and choosing Tutorial P5 from the open file dialog.

Now insert another effect of your choice—we’ll refer to this plug-in as the modulatee(!) If
you’re having trouble deciding, try Generic Effect.

[= Tutorial PSfor Internal (DL =
Plug-ln: Tutorial PS | Channel: Internal DL |
Template: j | Slot: 1 | |
Prograrm: M|S]nw Futzing |E|
View | Interface | 4|
dz=ign Parameter to Modulate Step Size Interwal
|Gereric Effect SFF Mad Freq | [26 | B10o0 |ms
] Output Malue Display 1 Finirnurn Fange
[J I I Y

Open both Tutorial P5’s edit window and the modulatee’s edit window. Using the pop-up
menu in the Tutorial P5 window, choose one of the parameters of the modulatee. With the
Tutorial P5 parameters set at their initial values, you should see the egg slider of the parameter
you chose in the modulatee’s edit window begin to move by itself.

Since Modulator plug-ins echo their input to their output, you may want to use them as Insert
Effects rather than Send Effects, so that the volume of the Send Effects bus is not changed. Some
Modulator plug-ins generate control information from their audio input. Since these plug-in’s
patchers contain audio objects (and therefore a DSP chain), the default echo audio thru
behavior does not apply. If you create this type of plug-in, we suggest that for maximum
flexibility, you provide an audio thru capability that you can turn on or off with a switch. The
switch should also have an associated parameter.

34 Developing Plug-ins for Pluggo

Host synchronization with plugsync~ Tutorial P6

Utilizing Host Syncronization Information

TEXT COMING SOON - refer to Tutorial P6 Max patcher

Developing Plug-ins for Pluggo 35

Tutorial P7 Audio-rate synchronization

Audio Rate Pan
COMING SOON - refer to Tutorial P7 Max patcher

36 Developing Plug-ins for Pluggo

MIDI input Tutorial P8

A Really Simple Synthesizer
COMING SOON - refer to Tutorial P8 Max patcher

Developing Plug-ins for Pluggo

37

Tutorial P9 MIDI output and processing

A MIDI processor
COMING SOON - refer to Tutorial P9 Max patcher

38 Developing Plug-ins for Pluggo

Using plugmorph Tutorial P10
Morphing
COMING SOON - refer to Tutorial P10 Max patcher

Conclusion

That concludes this short set of tutorials on plug-in building. To learn more about the details of
the plug-in development tools, read through the reference pages on each of the objects. Thepp
and plugconfig objects sport a number of features we haven’t discussed here. We hope the tools
provided will allow you to create the plug-ins of your dreams. If there’s something missing
whose absence is preventing you from doing so, please let us know.

Developing Plug-ins for Pluggo 39

Pl ug maker Turn patches and collectives into plug-ins

Introduction

The Plugmaker application transforms a Max patch or collective file into a VST plug-in. It
creates a new file containing the aEff resource from the Pluggo plug-in, along with the patcher or
collective data from the file you dragged. This file can be loaded directly by the sequencer, so the
user will see your GranularLovePotion plug-in in the pop-up menu of available plug-ins rather
than having to first choose Pluggo and then use a file open dialog box.

&

Flugrnaker

Using Plugmaker

To use Plugmaker, just drag the patcher or collective onto Plugmaker’s icon. A new file will be
created in the same folder as the file you dragged with .pi added to the filename. You’ll probably
want to get rid of the .pi extension after you move the file to the VstPluglns folder of your
favorite sequencer.

Plug-in Names

The name of your plug-in as displayed in the effect pop-up menu in a typical sequencer is not
the filename of the plug-in (although, oddly enough, the first letter of the filename determines
the order in which it appears in the menu in some applications). Rather, it is the name given to
the aEff resource. Plugmaker uses the filename of its source—whether patcher or collective—as
the name it gives to this resource.

This means that you should rename your patcher or collective to the name you desire for your
plug-in before dragging it onto Plugmaker.

Plugmaker.nostrip

Plugmaker has the ability to remove selected external objects from the resulting plug-in file,
saving disk space for a distribution of, like, 74 plug-ins or something. Create a text file called
Plugmaker.nostrip in the same directory as Plugmaker. In this file, list the Max external objects
you don’twant removed from the resulting plug-in. Likely candidates for this list would be Max
externals that you don’t want to distribute by themselves to pluggo users who might also be
Max/MSP users, for various reasons including greed and laziness. Of course, including externs
within the plug-in file is a good way to make your plug-in easy to distribute.

If no Plugmaker.nostrip file is found, or if it contains no text, all external objects will be removed
from the resulting plug-in file.

40 Developing Plug-ins for Pluggo

Configure the behavior of a plug-in P | ugco nflg

Introduction

Input

capture

recall

read

The plugconfig object lets you configure your plug-in’s behavior using a script that
will be familiar to users of the env, menubar , and lib objects. The script can be
accessed by double-clicking on a plugconfig object. You should only have one
plugconfig object per plug-in patcher; if you have more than one, the object that
loads last will be used by the runtime plug-in environment. Since it’s not easy to
determine which object that will be, just use one.

When you double-click on plugconfig , you’ll see a short script already in place.
These are the default settings, which are in fact identical to those you’d get if your
patch contained no plugconfig object atall.

plugconfig is pretty much a read-only object when used within the runtime plug-in
environment. The environment reads the settings from the object’s scriptand is
configured accordingly. You can send the messages view and offset to the object to
scroll the patcher to a new location, but most plug-ins will allow the user to do this
using the View menu that appears above the plug-in interface.

Use the capture and recall messages to build a set of interesting presets that are
embedded within your plug-in.

The word capture, followed by a program number (1-based) and optional symbol,
stores the current settings of all pp and plugmultiparam objects in the patcher
containing the plugconfig object as well as its subpatchers. The settings are stored
using a setprogram message added to the plugconfig object’s script. The parameter
numbers of the pp and plugmultiparam objects determine the order of the values in
the setprogram message. capture does not work within the runtime plug-in
environment.

The word recall, followed by a program number (1-based), sets all pp and
plugmultiparam 0objects to the values stored within a setprogram message in the
plugconfig object’s script. The parameter numbers of the pp and plugmultiparam
objects determine the values they are assigned from the contents of the setprogram
message.

The word read, followed by an optional symbol, imports a file of effect programs
saved in Cubase format and loads as many as possible into the plugconfig object for
saving as setprogram messages. No checking is done to verify that the file contains
effect programs for a plug-in with the same unique 1D code as the one in the
plugconfig object, nor is there any checking to ensure that the number of
parameters match. If the symbol is present, plugconfig looks for a file with that
name. Otherwise, a standard open file dialog is displayed, allowing you select an
effect program file.

Developing Plug-ins for Pluggo 41

P | ugco nflg Configure the behavior of a plug-in

view

offset

The word view, followed by a symbol that is the name of a view defined in the
plugconfig object’s script, scrolls the patcher containing the plugconfig object to
the coordinate offset assigned to the view.

The word offset, followed by numbers for the X and Y coordinates, scrolls the
patcher containing the plugconfig object to the specified coordinates.

Script Messages

Messages for View Configuration

usedefault

useviews

defaultview

addview

A View is a particular configuration of the plug-in’s edit window. plugconfig lets
you control which views you’d like to see, and add views of the plug-in patcher at
various pixel offsets that you can select with the menu. These might correspond to
“pages” of controls you offer to the user.

Arguments: none

If this message appears in a script, there is no plug-in edit window. Instead, the
parameter editing features of the host environment are used. By default, usedefault
is not present in a script, and the plug-in’s editing window appears.

Arguments: 1/0 for showing views, as discussed below

useviews determines which plug-in edit window views are presented to the user.
The views are specified in the following order: Parameters (the egg sliders), Interface
(a Max patcher-based interface), Messages (a transcript of the Max window useful
for plug-in development), and Plug-in Info (where you can brag about your plug-
in). If the edit window is visible, the Pluggo Info view always appears.

For example, useviews 1 0 0 0 would place only the Parameters view in the plug-in
edit window’s View menu. The user would be unable to switch to another view.

Arguments: name, x offset, y offset, 1/0 for initial view

defaultview renames the Interface item in the plug-in’s View menu to the name
argument, scrolling the patcher to the specified x and y offsets when the view is
made visible. If the third argument (optional) to defaultview is non-zero, the view is
made the initial view shown when the plug-in editing window is opened. This will be
true anyway if there is no Parameters view (as specified by the useviews message).

Arguments: name, x offset, y offset

addview adds an additional Interface view to the plug-in’s View menu with a
specified x and y offset. This allows you to scroll the patcher to a different location to
expose a different part of the interface that might correspond to a “page” of
parameter controls. If you send the view message to plugconfig with the name an
added view as an argument, the patcher window will scroll to the view’s x and y

42

Developing Plug-ins for Pluggo

Configure the behavior of a plug-in P | ugco nflg

offset. This works in Max as well as in the run-time plug-in environment, allowing
you to test interface configurations.

dragscroll Arguments: allow (1), disallow (0)
This message is currently unimplemented.
meter Arguments: 1 (meter the input, default), 2 (meter the output), 3 (off)

The meter message sets the initial mode of the level meter at the top of the plug-in
edit window. There is currently no way to permanently disable the meter, but it is
disabled if there isn’t enough space to display it fully because you’ve defined an edit
window that is too narrow.

Messages for Window Configuration
autosize Arguments: none

autosize, which by default is enabled, sizes the plug-in edit window to be the height
necessary to display all of the parameters, and the width of the parameter display.

setsize Arguments: width, height

setsize sets the plug-in edit window to be a specific size in pixels. If you use the
Parameters view, this size may be overridden if you’ve specified awindow too
narrow to display the egg sliders properly. Note that you should add approximately
30 pixels to the size of the patcher window in order to account for the height of the
View menu and level meter panel.

windowsize Arguments: none

windowsize Sets the size of the plug-in edit window to the size of the patcher
window.

Messages for Program Information
numprograms Arguments: number of programs

numprograms Sets the number of stored programs for the plug-in. Programs are
collections of values (between 0 and 1) for each of the parameters you've defined
using pp and plugmultiparam objects. The default number of programs is 64, the
minimumi is 1, and the maximum is 128. By default, all programs are set to 0 for
each parameter, but you can override this with the setprogram message.

setprogram Arguments: number, name, start index offset, list of values...

Normally, you won’t be typing the setprogram message into a script yourself; you'll
send capture messages to generate it automatically. You might end up editing it

Developing Plug-ins for Pluggo 43

P | ugco nflg Configure the behavior of a plug-in

initialpgm

though—for example to change the program’s name—so it’s useful to know a little
about the message’s format. setprogram lets you name a specific program and,
optionally, set some initial values for it. Program numbers (for the first argument)
startat 1. The name isa symbol, so if there are spaces in the name, it must be
contained in single smart quotes. The start index offset argument sets a number
added to 1 that determines the starting parameter number of the parameter values
listed in the message. After this argument, one or more parameter values follow. If
you don’t supply enough values to set all the defined parameters, the additional
ones are set to 0. You don’t need to set the values at all if you want them to be 0.
However, when you re-open the plugconfig script, the additional zero values will
have been added. The start index offset argument is used to handle stored programs
containing more than 256 parameters. 256 is the maximum size of a Max message.

Arguments: program number

The initialpgm message specifies the program that should be loaded when the plug-
inis initially opened. The default is 1, which loads the first program. An argument of
0 means no program will be loaded; instead in this case, you would use loadbang
objects to set the initial values of plug-in parameters. This behavior, however, is not
consistent with the majority of plug-ins that get set to the values in program 1 when
they are loaded (since 1 is always the initial program, unless the plug-in is being
restored as part of a document for the host application). Using an initialpgm 1
message has the added benefit of doing away with loadbang objects used to initialize
your parameters. Any other program number (up to the number of programs in the
plug-in specified by the numprograms message) can also be loaded, but the current
program number as shown in the host sequencer’s window cannot be changed by
the plug-in, so given that all host sequencers are initially set to program 1, you’ll end
up confusing the user if you load another program number initially.

Messages for DSP Settings

accurate

Arguments: none

The accurate message tells the runtime plug-in environment to run the Max event
(or control) scheduler at the same number-of-samples interval as the signal vector
size. At 32 samples this is slightly less than 1 ms but running the scheduler this often
can have some impact on the overall CPU intensiveness of the plug-in.

By default, accurate mode is not enabled and the scheduler runs at the same interval
as the 1/0 vector size of the host environment, typically 512 or 1024 samples. The
only thing accurate mode affects is parameter updating to a plug-in, so for example
if you have a control-rate “LFO” you may want to use this mode. The use of accurate
mode will also increase the frequency of parameter updating from control-rate
scheduled plugmod processes.

44

Developing Plug-ins for Pluggo

Configure the behavior of a plug-in P | ugco nflg

sigvsdefault Arguments: signal vector size

This message is currently ignored by the runtime plug-in environment. 32 is
currently the only possible signal vector size.

oversampling Arguments: code number

This message is currently ignored by the runtime plug-in environment.
preempt Arguments: 1/0 sets priority of control messages.

This message is currently ignored by the runtime plug-in environment.

Messages for Descriptive Information

When configuring the plug-in’s informational view, you choose between using text
with infotext, a picture with infopict, or not having an info view at all with noinfo.

infotext Arguments: text as separate words and numbers

infotext allows you to describe the effect and have the text appear in the Plug-in Info
view. There is a limit of about 256 words. A special symbol <P> produces a carriage
return. Note that all commas and semicolons in the text must be preceded by a
backslash. If you do not do this, you could wipe out the rest of your script when you
save it.

infopict Arguments: file name of a PICT file in the Max search path

infopict allows you to include a picture to display in the Plug-in Info view. If you use
infopict, you need to include the picture (manually) to your plug-in’s collective
script. The runtime plug-in environment will be able to find the picture within the
collective.

noinfo Arguments: none

This is the default behavior for plug-in information. If neither text nor picture has
been provided as information about the effect, the Plug-in Info item does not
appear in the View menu, even if you've enabled it with the useviews command
above. If noinfo and either infopict Or infotext appear together in a script, noinfo
“loses” and the info view is displayed.

welcome Arguments: text as separate words and numbers

The text arguments to the welcome message are displayed at the bottom hint area
when the user opens the plug-in editing window for the first time and looks at the
Parameters view, as well as when the cursor is moved into the top part of the
window when the Parameters view is being used. If the nohintarea message is present

Developing Plug-ins for Pluggo 45

P | ugco nflg Configure the behavior of a plug-in

nohintarea

swirl

hintbg

hintfg

uniqueid

in the script, the lack of a hint area in the Parameters view will cause the welcome
message not to be displayed.

Arguments: none

If the nohintarea message appears in a script, the runtime plug-in environment does
not provide additional space for a hint area at the bottom of the Parameters view. If
however the number of egg sliders does not completely fill the edit window because
its size was defined using windowsize Or setsize, a hint area will be present.

Arguments: none

The swirl message sets the hint area background to be drawn as a swirl inspired by
the pluggo packaging (which was itself inspired by the publicity poster for the classic
French film musical “Les Demoiselles de Rochefort™). The default appearance of the
hint area is the pain, non-swirl background. To set the swirl colors, use hintfg and
hintbg.

Arguments: red, green, and blue color components as 16-bit values

If you are offended by the yellow background color of the hint area, you can change
it to something else. As an example, a medium gray would be specified with hintog
40000 40000 40000, and a white background would be specified with hintbg 65535
65535 65535.

Arguments: red, green, and blue color components as 16-bit values

When using the swirl mode for the hint area, the hintfg message specifies the color of
the dark part of the swirl. For best results, hintfg should be darker than hintbg.

Arguments: id1id2 id3 (between 0 and 255)

You'll find this message in your plugconfig script when you first open it. The
arguments will be three randomly generated numbers between 0 and 255,
something like three quarters of an IP address.

These numbers are used to build an 1D code that will uniquely identify your plug-in.
The code is used to identify a plug-in as a pluggo-based animal as well as to preserve
plugmod connections between patchers.

You can either use the three randomly generated numbers or something intentional.
There are about 16 million possibilities. 0 0 0 is reserved and cannot be used. 0
followed by two other numbers is reserved for use by Cycling 74 and its registered
plug-in developers. You won’t need to interact with this ID code, although you
might want to know that part of it will be used as the basis for a floating-point
“patcher code” output by the plugmod object. The floating-point value, however,
will not in any way resemble the ID you choose.

46

Developing Plug-ins for Pluggo

Configure the behavior of a plug-in

plugconfig

Messages for Host Configuration

synth Arguments: none

This message tells the host that the plug-in should be considered a synthesizer and

will receive MIDI and output audio only (i.e, it won’t take audio as input). This
directs the Cubase and Logic host applications to restrict the plug-in to VST

Instrument contexts.
Arguments

None.
Output

None.
See Also
plugmod Modify plug-in parameter values
Tutorial P2 Enhancing the plug-in interface
Tutorial P3 A plug-in with a Max interface

Developing Plug-ins for Pluggo

47

P | ug IN~ Define a plug-in’s audio inputs

Introduction

plugin ~ and plugout ~ define the signal inputs and outputs to a plug-in. You can use
them within Max as simple thru objects, feeding plugin ~ a test signal and routing
the output of plugout ~ to a dac~object. When plugin ~ and plugout ~ are operating
within the runtime environment however, they act differently. plugin ~ ignores its
input and instead outputs the plug-in’s signal inputs fed to it by the host mixer.
plugout ~ does not output any type of signal out its outlets; instead it feeds its signal
inputs to the plug-in’s audio outputs to the host mixer.

Input

signal In left and right inlets: When used in Max/MSP, the plugin ~ object echoes its input
to its output. When used in the runtime plug-in environment, signals sent to its
inputs are ignored, and instead the audio inputs to the plug-in are copied to the
plugin ~ object’s outlets.

Arguments
None. plugin ~ always has two inlets and two outlets.

Output

signal When used in Max/MSP, the signal output of the plugin ~ object is simply its signal
input. When used in the runtime plug-in environment, the signal output will be the
left and right channels of the audio input to the plug-in from the host. If the plug-in
is inserted in a mono context, it’s possible that only the left channel will contain the
incoming audio signal and the right channel will be 0. The exact nature of the audio
input to the plug-in is up to the host mixer.

Examples

1'5. tezt inputs in Max

B

left ; ; right
channel § channel
-

g J—
F
’ I

|ta|:-1'n“’ 1I:|I:|| |ta|:-1'n"’ 1I:|I:||

See Also

plugout ~ Define a plug-in’s audio outputs

48 Developing Plug-ins for Pluggo

Receive MIDI from a plug-in host pl ugm idiin

Introduction

plugmidiin delivers any MIDI information targeted to the plug-in. It functions
analogously to the Max midiin object, delivering raw MIDI as a sequential byte
stream. You’ll want to connect the midiparse object to its outlet. MIDI information
is always delivered by plugmidiin at high-priority (interrupt) level. You may have
more than one plugmidiin object in a patcher; each will output the same
information.

Input
None.
Arguments
None.

Output

int MIDI message bytes in sequential order. For instance, a note-on message on chanel
1 for note number 60 with velocity of 64 would be output as 144 followed by 60
followed by 64.

See Also

midiparse (Max Reference manual) Interpret raw MIDI data

Developing Plug-ins for Pluggo 49

plugmld lout Send MIDI to a plug-in host

Introduction

plugmidiout sends MIDI information to the host, where it is routed according to
the host’s current configuration. The plug-in has no control over the routing of its
MIDI output. plpugmidiout is analogous to midiout ; it expects raw MIDI bytes in
sequential order. You can use midiformat to transform numbers into MIDI
messages appropriate for plugmidiout .

Input

int MIDI message bytes in sequential order. For instance, a note-on message on chanel
1 for note number 60 with velocity of 64 would be sent to plugmidiout as 144
followed by 60 followed by 64.

Arguments
None.
Output

None.

See Also

midiformat (Max Reference manual) Prepare data in the form of a MIDI message

50 Developing Plug-ins for Pluggo

Modify plug-in parameter values P lu gm od

Introduction

Input

anything

plugmod allows a plug-in to modify the parameter values of another plug-in. It
generates a pop-up menu listing all the visible parameters of all currently loaded
plug-ins. The output of this menu is fed back to the input of the object to tell it what
parameter should be modified with the numeric input plugmod receives.
Additional inlets and outlets interface with pp objects to save the object’s
connection to a particular plug-in and parameter in effect presets. This allows
plugmod to reconnect to its target plug-in and parameter when a sequencer
document is reloaded.

Inleftinlet: A plug-in name followed by a parameter index sets the parameter the
plugmod object will modify with its numeric input. This plug-in and parameter are
referred to as the object’s target.

No Connection In leftinlet: When the word No Connection is received, the plugmod object

int or float

breaks its connection (if any) with its current target and stops affecting the target
parameter. The No Connection symbol is always the first item in the menu generated
by plugmod ’s left outlet when plug-ins are inserted or deleted in the runtime
environment. plugmod:No Connection

In left inlet: The value received, which is constrained between 0 and 1, is assigned to
the target plug-in and parameter.

In 2nd inlet: The value received is added to the base value of the parameter before
plugmod began to modify it.

In 3rd inlet: The value received is multiplied by the base value of the parameter
before plugmod began to modify it.

float In 4thinlet: The value is interpreted as a code to assign a new plug-in as a target. The
outlet of a pp object is normally connected to this inlet.
Inrightinlet: The value is interpreted as a code to assign a new parameter as a target.
The outlet of a pp object is normally connected to this inlet.

Arguments
None.

Output

anything Out left outlet: Output from this outlet of the plugmod object occurs when a new

plug-in is either inserted or deleted. The messages update an attached menu object

Developing Plug-ins for Pluggo 51

P lu gm od Modify plug-in parameter values

with a new list of plug-ins and parameters that are potential targets for this object to
modify.

float Out 2nd outlet: The current plug-in code is output when the object’s target changes
via a message from the attached pop-up menu object sent to the object’s left inlet, or
when a new plug-in code is received in the 4th inlet.

Out right outlet: The current parameter code is output when the object’s target
changes via a message from the attached pop-up menu object sent to the object’s left
inlet, or when a new parameter code is received in the right inlet.

Examples

ED- | data sender

) plugrnod connection saving parameters
data and renu in

r|:-1ugm-:u:| |
generate [
reny out [pp 2 hidden fixed PluginCode |
I
[pp 1 hidden fixed ParamCode |
[
|".'."1'1'I be filled with parameter names |
uze the RIGHT outlet
of the rnenu object
See Also
menu (Max Reference manual) Pop-up menu, to display and send commands
Tutorial P5 A modulator plug-in

52 Developing Plug-ins for Pluggo

Generate parameter values from programs pl ug morph

Introduction

Input

anything

plugmorph allows a plug-in to modify the parameter values of another plug-in by
creating a weighted average of two or more of its effect programs. Such an average is
often known as a “morph” since it can often (but not always) create a continuous
perceptual space between one effect program and another. plugmorph generates a
pop-up menu listing all currently loaded plug-ins. The output of this menu is fed
back to the input of the object, allowing the user to specify which plug-in should be
modified according to the input plugmorph receives. An additional inlet and outlet
interface with a pp object saves the object’s connection to a particular plug-in. This
allows plugmorph to reconnect to its target plug-in when a sequencer document is
reloaded.

In left inlet: A plug-in name sets what the plugmorph object will modify with its
input. This plug-in is referred to as the object’s target.

No Connection In leftinlet: When the word No Connection is received, the plugmorph object

list

morphfixed

breaks its connection (if any) with its current target and will no longer change a
plug-in’s parameters. The No Connection symbol is always the first item in the menu
generated by plugmorph ’s left outlet when plug-ins are inserted or deleted in the
runtime environment. plugmorph:No Connection

In leftinlet: Causes plugmorph to calculate new values for the connected plug-in’s
parameters. The format of the list is an effect program number followed by a
wieghting fraction. A maximum of 128 program numbers can be specified. If the
fractions do not add up to 1, they are normalized to do so. As an example, the list 1
0.5 2 0.5 would set the target plug-in’s pararmeters to values that were a simple
average of effect programs 1 and 2. A list of 1 0.6 2 0.6 3 0.6 4 0.6 would performa
weighted averaging of the first four effect programs where the parameter values of
each program were represented equally. In other words, each programs’s parameter
value contributes 25% to the morphed value. If the target plug-in’s current effect
program is among those being morphed, an attempt is made not to store the
parameter values so the user can perform more than one morph. The generated
parameter values can be stored later using the store message to plugmorph .
However, some multislider -based plug-ins defer parameter changes in such a way
that this storage prevention mechanism doesn’t work, requiring that the user set the
current effect program to a number that isn’t involved in the morph.

In left inlet: The word morphfixed, followed by a number, determines whether
parameters marked as fixed are included in the morph. If the number is 0, fixed
parameters are not included and their values are left unchanged. If the number not
zero, fixed parameters are included. The default behavior of plugmorph isto
include fixed parameters.

Developing Plug-ins for Pluggo 53

P lu gmorp h Generate parameter values from programs

morphhidden In left inlet: The word morphhidden, followed by a number, determines whether

parameters marked as hidden are included in the morph. If the number is 0, hidden
parameters are not included and their values are left unchanged. If the number not
zero, hidden parameters are included. The default behavior of plugmorph isto
include hidden parameters.

store In left inlet: The word store copies the current values of the target plug-in’s
parameters to its effect program.

float Inrightinlet: The value is interpreted as a code to assign a new plug-in as a target.
The outlet of a pp object is normally connected to this inlet.

Arguments
None.

Output

anything Out left outlet: Output from this outlet of the plugmorph 0object occurs when a new
plug-in s either inserted or deleted. The messages update an attached menu object
with a new list of plug-ins that are potential targets.

float Out 2nd outlet: When a new plug-in is selected as a target, plugmorph outputs the
number of effect programs it contains out this outlet.
Out right outlet: The current parameter code is output when the object’s plug-in
target changes via a message from the attached pop-up menu object sent to the
object’s left inlet, or when a new parameter code is received in the right inlet.

54 Developing Plug-ins for Pluggo

Generate parameter values from programs pl ugmorph

Examples
prograrnn 1 program 2
[g
create list of
weightings
according to
slider
position
1 $1 2 %2 | morph between programs 1 and 2
||:n1ug-1'n names here I right outlet selects
| target plug-in by name
| tch de i
[Pugrmaren patcher code in
L] | patcher code out
| = =
K 1 hidden fixed PatcherCod
generator _ [pp 1 hidden fixed PatcherCode |
rumber of |
effect programs
See Also
menu (Max Reference manual) Pop-up menu, to display and send commands

Developing Plug-ins for Pluggo 55

P | ugmu It pParaim pefine multiple plug-in parameters

Introduction

The plugmultiparam object lets you define three or more parameters that are
displayed and changed by a single object. However, these parameters will be hidden
from the Parameters view in the plug-in window; they can only be changed by
creating a Max user interface. Primarily, plugmultiparam was designed to be used in
conjunction with the multislider object; it can also work with the plugstore object,
or simply a set of cleverly organized pack and unpack objects.

Input

int The value at the specified parameter index is sent out the object’s right outlet.

list Interpreted as a set of values to be assigned to the object’s parameters, starting at the
lowest numbered parameter. If the list is longer than the number of parameters
defined by the object, the extra elements are ignored. The values of the list are
constrained to be within the minimum and maximum arguments of the object.

bang Sends the currently stored values out the object’s left outlet.

setmessage The word setmessage, followed by a symbol, changes the message that sets
individual values when they change (for example, because the stored program was
changed). The default select message is useful in conjunction with the multislider
object.

Arguments

int Obligatory. Defines the starting parameter index to be covered by the object.

int Obligatory. Defines the number of parameter indices to be covered by the object.

float or int Optional. Sets the minimum value of the input and output for all parameters. The
default value is 0.

float orint Optional. Sets the maximum value of the input and output for all parameters. The
default value is 1.
Example: 32 parameters whose value ranges between 1 and 99 are stored starting at
parameter index 13 with the following arguments to plugmultiparam :
plugmultiparam 13 32 1 99

Output

list Out left outlet: The left outlet produces the current values as a list when the object
receives a bang message.

56 Developing Plug-ins for Pluggo

Define multiple plug-in parameters pl ugmu It param

any message Out left outlet: The plugmultiparam 0bject also produces a message to set
individual values in the collection using the following format

<message name> <index> value

By default, the message name is select—this is appropriate for setting one value in a
multislider object. You can change the name to something else with the setmessage
message described above. The index argument starts at O for the first parameter and
goes up by 1 for each subsequent parameter—it is not affected by the starting
parameter index argument to plugmultiparam . The index argument is followed by
the current parameter value.

float Out right outlet: When anint message is received, the value at the specified
parameter index is output.

Examples

[1

[plugrmuTtiparam 10 16| 16 pararmeters...
|

J edited by 16 =liders
See Also
plugstore Store multiple plug-in parameters
pp Define a plug-in parameter
Tutorial P4 Using multislider and plugmultiparam

Developing Plug-ins for Pluggo 57

P | UgOUt"‘ Define a plug-in’s audio outputs

Introduction

plugin ~ and plugout ~ define the signal inputs and outputs to a plug-in. You can use
them within Max as simple thru objects, feeding plugin ~ a test signal and routing
the output of plugout ~ to a dac~object. When plugin ~ and plugout ~ are operating
within the runtime environment however, they act differently. plugin ~ ignores its
input and instead outputs the plug-in’s signal inputs fed to it by the host mixer.
plugout ~ does not output any type of signal out its outlets; instead it feeds its signal
inputs to the plug-in’s audio outputs to the host mixer.

Input
signal In left and right inlets: When used in Max/MSP, the plugout ~ object echoes its
input to its output. When used in the runtime plug-in environment, the input to
plugout ~ is copied to the audio outputs of the plug-in.
Arguments
None. plugout ~always has two inlets and two outlets.
Output
signal When used in Max/MSP, the signal output of the plugout ~object is simply its signal
input. When used in the runtime plug-in environment, the signal output to the
outlets is undefined, and the input is copied to the audio outputs of the plug-in.
Examples
[tapout™ 100 | [tapout™ 100 |
; ;
LS ‘ f,i
left | ¢ right
channel channel
; b otest outputs in Max
See Also
plugin ~ Define a plug-in’s audio inputs

58 Developing Plug-ins for Pluggo

Host-synchronized sawtooth wave P lu ap hasor~

Introduction

plugphasor ~outputs an audio-rate sawtooth wave that is sample-synchronized to
the beat of the host sequencer. The waveform can be fed to other audio objects to
lock audio processes to the audio of the host.

Input
None.
Arguments
None.

Output

signal The output of plugphasor~ is analogous to phasor~ : it ramps from 0 to 1 over the
period of a beat. If the current host environment does not support synchronization
or the host’s transport is stopped, the output of plugphasor~ isa zero signal..

See Also

plugsync ~ Report host synchronization information
Tutorial P7 Audio-rate synchronization

Developing Plug-ins for Pluggo 59

P | ug receive~ Receive audio from another plug-in

Introduction

plugsend ~and plugreceive ~are used to send audio signals from one plug-in to
another. They are used in the implementation of the PluggoBus feature of many of
the plug-ins included with pluggo.

Input

signal The input to the plugreceive ~ object comes from a plugsend ~ object to which itis
currently connected. Initially, this will be a plugsend ~ having the same name as the
plugreceive ~ object’sargument.

set The word set, followed by a symbol naming a plugsend ~object, connects the
plugreceive ~ object to a the specified plugsend ~ object(s), and the plugreceive
object’s audio output becomes the input to the plugsend ~. If the symbol doesn’t
name aplugsend ~ object, the audio output becomes zero.

Arguments

symbol Obligatory. Gives the plugreceive ~ object a name used for connecting with one or
more plugsend ~ objects.

Output

signal The audio signal input to the plugsend ~ objects connected to this object. If no
plugsend ~ objects are connected, the audio output is zero.

There may be a delay of one processing (1/0) vector size of the host mixer between
the plugreceive ~ output and the inputs to the plug-in in which the plugreceive ~is
located. This occurs when aplugsend ~ occurs later in the processing chain than the
plugreceive ~towhichitissending audio.

Examples
[plugreceive™ SuncSignal |
||::atcher' dnalyze |
(10 42525
beat detected errar
See Also
plugsend ~ Send audio to another plug-in

60 Developing Plug-ins for Pluggo

Send audio to another plug-in pl Ugsend"‘

Introduction

plugsend ~and plugreceive ~are used to send audio signals from one plug-in to
another. They are used in the implementation of the PluggoBus feature of many of
the plug-ins included with pluggo.

Input

signal The input to the plugsend ~ object is mixed with other plugsend ~ objects, which
can be in the same plug-in or a different plug-in, and is then sent out the signal
outlets of any connected plugreceive ~ objects.

Arguments

symbol Obligatory. Gives the plugsend ~ object a name used for connecting with other
plugsend ~and plugreceive ~objects.

Output
None.

Examples
E broadcast this signal
¢ to other plug-ins

|p‘lug59nd“’ Globaléd40 |
See Also
plugreceive ~ Receive audio from another plug-in

Developing Plug-ins for Pluggo 61

P | UgStO re Store multiple plug-in parameter values

Introduction

The plugstore object works with plugmultiparam to allow you to get values into
and out of plugmultiparam from multiple locations in a patcher.

Input
bang Sends the stored list out the object’s outlet.
list Stores the elements of the list (up to the size of the object) and repeats them to the
object’s outlet.
select The word select, followed by an index and value, stores the value at the specified
index (starting at 1 for the first element) and sends the stored list out the object’s
outlet. plugstore:select
set The word set, followed by an index and value, stores the value at the specified index
(starting at 1 for the first element) but does not output the stored list. plugstore:set
Arguments
int Obligatory. Sets the number of elements stored in the plugstore object’s list.
Output
list The stored list is output whenever a list, bang, Or select message is received.
Examples
[]
[plugrnuttiparam 12 4 |
Lp]ugst-:nr'e 4 | rirnics a multislider
do sormething
|l.||n|:-ack I:I.|I:I.EI.EI. | | | writh data
o |po. |po. |Ro |
See Also

plugmultiparam Define multiple plug-in parameters

62 Developing Plug-ins for Pluggo

Report host synchronization information pl ugSync-

Introduction

Input

The plugsync~ object provides information about the current state of the host.
Sample count information is available in any host; even Max. The validity of the
other information output by the object is dependent upon what synchronization
capabilties the host implements; the value from the flags (9th) outlet tells you what
information is valid. Output from plugsync~ is continuous when the scheduler is
running./

None.

Arguments

Output

int

int

int

float

list

float

float

float

None.

Out left outlet: 1 if the host’s transport is currently running; 0 if it is stopped or
paused.

Out 2nd outlet: The current bar count in the host sequence, starting at 1 for the first
bar. If the host does not support synchronization, there is no output from this
outlet.

Out 3rd outlet: The current beat count in the host sequence, starting at 1 for the first
beat. If the host does not support synchronization, there is no output from this
outlet.

Out 4nd outlet: The current beat fraction, from 0 to 1. If the host does not support
synchronization, the output is 0. If the host does not support synchronization, there
is no output from this outlet.

Out 5th outlet: The current time signature as a list containing numerator followed
by denominator. For instance, 3/4 time would be output as the list 3 4. If the host
does not support time signature information, there is no output from this outlet.

Out 6th outlet: The current tempo in samples per beat. This number can be
converted to beats per minute using the following formula: (sampling-rate /
samples-per-beat) * 60. If the host does not support synchronization, there is no
output from this outlet.

Out 7th outlet: The current number of beats, expressed in 1 PPQ. This number will
contain a fractional part between beats. If the host does not support
synchronization, there is no output from this outlet.

Out 8th outlet: The current sample count, as defined by the host.

Developing Plug-ins for Pluggo 63

P lu gsync~ Report host synchronization information

int Out 9th outlet: A number representing the validity of the other information coming
from plugsync~ . Mask with the following values to determine if the information
from plugsync~ will be valid.
Sample Count Valid 1 (always true)
Beats Valid 2 (2nd, 3rd, 4th, and 7th outlets valid)
Time Signature Valid 4 (5th outlet valid)
Tempo Valid 8 (6th outlet valid)
Transport Valid 16 (left outlet valid)
See Also
plugphasor ~ Host-synchronized sawtooth wave
Tutorial P6 Synchronization with plugsync~
Tutorial P7 Audio-rate synchronization
64 Developing Plug-ins for Pluggo

Report host environment capabilities P | ugtel |

Introduction

You can use the plugtell object to learn what capabilities are present in the host
environment in which your plug-in is loaded. The symbols listed below are not the
only things you can ask the host, but they are the ones currently supported by VST
2..0and MAS as of the writing of this manual.

Input

sendVstEvents Returns whether the host sends events to the plug-in.

sendVstMidiEvent Returns whether the host sends MIDI events to the plug-in

sendVstTimelnfo Returns whether the host sends any form of time information to the
plug-in

receiveVstEvents Returns whether the host does anything with events sent to it by the
plug-in.

receiveVstMidiEvent Returns whether the host does anything with MIDI sent to it by the
plug-in.

receiveVstTimelnfo Returns whether the host does anything with time information sent to it
by the plug-in.

reportConnectionChanges Returns whether the sends information about changes in plug-

in input and output connections.

acceptlOChanges Returns whether the plug-in can change its input and output
connections with the host.

sizeWindow Returns whether the host supports the plug-in resizing its window.

asyncProcessing Returns whether the host’s processing is asynchronous (such as on an
external DSP card).

offline Returns whether the host supports the VST offline specification (the runtime plug-
in environment currently doesn’t support it).

supplyldle Returns whether the host can supply an idle callback to a plug-in even if the plug-
in’swindow isn’t open.

supportShell Returns whether the host supports a shell that can open more than one plug-in.

Arguments

None.

Developing Plug-ins for Pluggo 65

P | ugtel | Report host environment capabilities

Output

int 1if the capability is supported by the host environment, 0 if it is either not
understood or not supported.

66 Developing Plug-ins for Pluggo

Define a plug-in parameter pp

Introduction

Input

bang

float or int

float or int

The pp object (an abbreviation for plug-in parameter) defines plug-in parameters. It
has a number of optional arguments that let you define the parameter minimum
and maximum, hide the parameter from display, set the color of the egg slider
associated with it, etc. You connect the output of the pp object to something you
want to control with a stored parameter. If your plug-in will use a Max patcher
interface, you need to connect the interface element that will change the parameter’s
value to the inlet of the pp object. The pp object will send new parameter values out
its outlet at various times: when you move an egg slider, when the user switchesto a
new effect program, and when the host mixer is automating the parameter changes
of your plug-in.

Internally, the pp object and the runtime plug-in environment store values between
0and 1. By giving the pp object optional arguments for minimum and maximum,
you can store and receive any range of values and the object will convert between the
range you want and the internal representation. If for some reason you want to

know the internal 0-1 representation, you can get it from the object’s right outlet. If
you want to send a value that is based on the internal 0-1 representation, use the
rawfloat message.

Sends the current value of the parameter out the object’s right outlet in its internal
(unscaled) form between 0 and 1, then out the object’s left outlet scaled by the
object’s minimum and maximum.

Sets the current value of the parameter and then sends the new value out the right
and left outlets as described above for the bang message. The incoming number is
constrained between the minimum and maximum values of the object.

Sets the current value of the parameter without any output. The incoming number
is constrained between the minimum and maximum values of the object.

(Get Info...)Choosing Get Info... from the Max menu opens a dialog for editing a description of

open

text

rawfloat

the parameter that is displayed in the Parameters view of the plug-in edit window
when the user moves the cursor over the egg slider corresponding to the parameter.
This command is not available in the runtime plug-in environment.

Same as choosing Get Info... from the Max menu.

The word text, followed by a single symbol, allows you to set the text displayed in the
Parameters view of the plug-in edit window when the user moves the mouse over
the egg slider corresponding to the parameter. pp:text

The word rawfloat, followed by a number between 0 and 1, sets the current
parameter value to the number without scaling it by the object’s minimum and

Developing Plug-ins for Pluggo 67

PP Define a plug-in parameter

maximum. The value is then send out the right and left outlets of the object as
described above for the bang message.

Arguments
The pp object takes a number of arguments. They are listed in the order that they
need to appear.

int Obligatory. The first argument sets the parameter number. The first parameter is 1.

Parameter numbers should be consecutive (but they need not be), and two pp
objects should not have the same parameter number. An error will be reported in
the Messages view of the runtime plug-in environment if duplicate parameter
numbers are encountered.

hidden Optional. If the word hidden appears as an argument, the parameter will not be
given an egg slider in the plug-in edit window and will not appear in the pop-up
menu generated by the plugmod object. pp:hidden

fixed Optional. If the word fixed appears as an argument, the parameter will not be
affected by the Randomize and Evolve commands in the parameter pop-up menu
available in the plug-in edit window when the user holds down the command key
and clicks in the interface. This is appropriate for gain parameters, where
randomization usually produces irritating results.

c2-c4 Optional. If c2, ¢3, or c4 appears as argument, the color of the egg slider is set to
something other than the usual purple. Currently c2 is Wild Cherry, c3 is
Turquoise, and c4 is Harvest Gold. pp:color messages

symbol Optional. The next symbol after any of the optional keywords names the parameter.
This name appears in the Name column of the Parameters view and in the pop-up
menu generated by the plugmod object.

float orint Optional. After the parameter name, a number sets the minimum value of the
parameter. The minimum and maximum values determine the range of values that
are sent into and out of the pp object’s outlets, as well as the displayed value in the
Parameters view. The type of the minimum value determines the type of the
parameter values the object accepts and outputs. If the minimum value is an integer,
the parameters will interpreted and output as integers. If the minimum value is a
float, the parameters will be interpreted and output as floats.

float or int Optional. After the minimum value, a number sets the maximum value of the
parameter. The minimum and maximum values determine the range of values that
are sent into and out of the pp object’s outlets, as well as the displayed value in the
Parameters view.

68 Developing Plug-ins for Pluggo

Define a plug-in parameter pp

symbol

choices

dB

Output

int or float

float

Optional. After the minimum and maximum values, a symbol sets the label used to
display the units of the parameter. Examples include Hz for frequency, dB for
amplitude, and ms for milliseconds.

Optional. If the word choices appears after the minimum and maximum values,
subsequent symbol arguments are taken as a list of discrete settings for the object
and are displayed as such in the Parameters view. As an example pp 1 Mode 0 3
choices Thin Medium Fat would divide the parameter space into three values. 0
(anything less than 0.33) would correspond to Thin, 0.5 (and anything between
0.33and 0.67) would correspond to Medium, and 1 (and anything between 0.67
and 1.0) would correspond to Fat. Only the name of the choice, rather than the
actual value of the parameter, is displayed in the Parameters view.

Optional. If the word choices does not appear as argument, the word dB can be used
to specify that the value of the parameter be displayed in decibel notation, where 1.0
is 0 dB and 0.0 is negative infinity dB.

Out left outlet: The scaled value of the parameter is output when it is changed within
the runtime environment or when a bang, int, float, or rawfloat message is received in
the object’s inlet. The parameter value can be changed in the runtime environment
in the following ways: the user moves an egg slider, the parameter is being
automated by the host mixer, or the user has selected a new effect program for the
plug-in within the host mixer.

Out right outlet: The unscaled value of the parameter is output when it is changed
by the runtime environment or when a bang, int, float, or rawfloat message is
received in the object’s inlet. You might use this value if you want to use a different
value in your plug-in’s computation than you display to the user.

Examples

See Also

define pararneter

— |
[op 1 fieed o2 Dry M 0.2 |

LR E:
'r.‘. ; 0. dizplay and edit parareter
&

what it does

plugmultiparam Define multiple plug-in parameters

Tutorial P1

A plug-in with an egg slider interface

Developing Plug-ins for Pluggo 69

pptem PO Define tempo and sync parameters

Introduction

COMING SOON - refer to Tutorial P7 Max patcher for an
example

70 Developing Plug-ins for Pluggo

Define a time-based plug-in parameter pptl me

Introduction

COMING SOON - refer to Tutorial P7 Max patcher for an
example

Developing Plug-ins for Pluggo 71

Conventions PluggoSync and PluggoBus

PluggoSync

The PluggoSync plug-in outputs Max messages that you can use to keep your plug-ins in sync
with each other and/or with the host sequencer environment.

14
Yiew | pluggoSuync I |

Pluggo: PluggoSync =)

Internal EFF Audio Sync
=120

2000 Rl
Thru Avg BPM

Beat Divider Sync Ouput

2 plugg
Z plugg
E ¢ pluggaSync <
m 2 pluggosSync |

The PluggoSync plug-in can run on its own internal clock, or it can derive its tempo from the
audio signal it is receiving. To synchronize to audio, PluggoSync expects a short pulse at the
beginning of each bar. We distribute a file called sync.aiff for this purpose that can be imported
into an audio track in the sequencer. Simply loop the track or copy the file so that it repeats every
bar. PluggoSync has the ability to chase a changing tempo.

PluggoSync uses the following Max send objects to broadcast messages about the current
synchronization state.

plugsync_ms - current number of milliseconds per bar
plugsync_click - a bang at the top of each bar
plugsync_bpm - current tempo in beats per minute
plugsync_1 - user-defined sync code (see below)
plugsync_2 - user-defined sync code (see below)
plugsync_3 - user-defined sync code (see below)
plugsync_4 - user-defined sync code (see below)

To receive these messages in your own plug-in, use a receive object with the name
corresponding to the information you want. For example, if you want to know when each bar
starts, use receive plugsync_click.

72 Developing Plug-ins for Pluggo

PluggoSync and PluggoBus Conventions

Note that the plugsync_5 output available in version 1.0 has been removed.

In the PluggoSync edit window, the user can select a beat division factor for each of the five
plugsync signals. They use this to factor to broadcast a numbered beat count on each
subdivision of the bar.

For example, if PluggoSync is set to internal clock running at 120 bpm, it takes two seconds for
each bar to go by. Therefore PluggoSync will send the number 2000 to plugsync_ms. If the user
has selected a beat division of 4 for plugsync_1, the following messages are sent:

- at the top of the bar, plugsync_click sends a bang and plugsync_1 sendsa 1
- at 500 ms past the top of the bar, plugsync_1 sends a 2

- at 1000 ms past the top of the bar, plugsync_1 sendsa 3

- at 1500 ms past the top of the bar, plugsync_1 sendsa 4

The incoming audio sync signal is echoed to a plugsend ~ object named pluggoSyncAudio. You
can use a plugreceive ~ with this name to pick it up if you’d like to do something with it.

PluggoSync outputs a PluggoSync now outputs an audio signal the moves from 0 to 1 over the
duration of a beat. Use plugreceive~ named plugsync_phasor to receive this information.
PluggoSync assumes 4/4 time - you will get 4 phasor cycles for each PluggoSync bar

PluggoBus

Audio signals on the PluggoBus can be found on eight different plugsend ~/plugreceive ~
“channels.” You can pick up a signal off the bus with a plugreceive ~object, and put asignal
onto the bus with a plugsend ~ object.

The names are as follows:

PluggoBus1L left channel of PluggoBus 1
PluggoBus1R right channel of PluggoBus 1
PluggoBus2L left channel of PluggoBus 2
PluggoBus2R right channel of PluggoBus 2
PluggoBus3L left channel of PluggoBus 3
PluggoBus3R right channel of PluggoBus 3
PluggoBus4L left channel of PluggoBus 4

PluggoBus4R right channel of PluggoBus 4

Developing Plug-ins for Pluggo 73

Conventions PluggoSync and PluggoBus

The source patchers for both PluggoBus Send and PluggoBus Rcv are included in the
development materials. You can copy these as necessary if you wish to add either selectable
PluggoBus send or receive capability into your plug-in.

74 Developing Plug-ins for Pluggo

Runtime Issues

User Interface Limitations

There are some differences between the runtime Max environment as it exists in MAXplay and
in the plug-in environment. Perhaps the most important one is that the runtime plug-in
environment lets you load a single patcher (with subpatchers), but you can’t view what’s in the
subpatchers. Instead, you have a fixed size “view” into a portion of a single patcher window. In
the VST specification there is no provision for opening anything beyond a single editing
window, so this is a relatively permanent limitation. As a part of this limitation, double-clicking
on any Max object within the interface view is disabled. We can’t, however, prevent objects from
opening windows in other ways, but it is your responsibility to avoid doing this (and prevent the
user from doing this), since most host environments will crash if a foreign window enters their
space.

Audio Processing

The adc~and dac~ objects are completely non-functional in the runtime plug-in environment.
To get any kind of audio input or output, you will need to use plugin ~and plugout ~. In
addition, the 1/0 vector size, signal vector size, and sampling rate are determined by the host
environment. For older versions of the Sound Manager, many sequencers uses an I/O vector
size of 1056, which corresponds to some magic value that an FFT-ignorant hardware engineer at
Apple thought was, in the immortal words of William Casey as reported by Oliver North, “a
neat idea.” Luckily, 32, a power of 2, will divide into this number (1056 is 32 x 33), so 32 has
become the one and only signal vector size used in the runtime environment. The reason for this
is that it allows all plug-ins to share the same set of signal vectors, which is a gigantic win in terms
of CPU utilization since it allows memory that is already in the data cache to be reused. The
processor operates much more efficiently when it can access data that is already in the cache.

Note that it is impossible to know the host environment’s “real” audio input or output device.
Your patcher, when it works as a plug-in, only has the input and output audio vectors to
communicate with the outside world.

Initialization

Often people write initialization schemes in their audio patchers that employ delay or pipe
objects triggered from loadbang objects. Usually, this is an attempt to get something to initialize
in the proper order. The problem is that these schemes will not initialize the patcher before the
audio is turned on. The execution of events connected to loadbang objects is the only thing that
happens in the runtime plug-in environment after a patcher and before the DSP chain is
compiled and executed.

This has specific implications for the cycle~ object when you supply it with a buffer ~ object
name as an argument. The cycle~ object copies its wavetable data from the associated buffer ~
when the DSP chain is compiled. This means that if the contents of the buffer ~ have not already
been prepared, the cycle ~ object will not have the right data in its wavetable, and nothing short
of sending the cycle ~ object a set message will correct the problem. The solution is to initialize
the buffer ~ entirely from the output of the loadbang without depending on the scheduler, either

Developing Plug-ins for Pluggo 75

Runtime Issues

by using the Uzi object or by reading afile into the buffer ~. Do not use objects that use the
scheduler such asline andmetro to do this sort of initialization.

The Max Window

In the Messages view of a plug-in edit window, you can see the last few lines of the Max window.
This will help you reveal errors in your code or report certain types of diagnostic information.
This is more of a developer than end-user feature, so you may want to disable the Messages view
if slickness is your main concern. Note that the Max window is global to all plug-ins, so you may
see error messages and posts generated by other plug-ins in your own plug-in’s Messages view.

Multiple Plug-in Issues

You might ask, could I create more than one plug-in and then have them communicate using
send and receive , Or send ~ and receive ~? The answer is yes for send andreceive , but no for
send ~ and receive ~. For communicating audio signals, you need to use plugsend ~and
plugreceive ~. When there are several plug-ins running in the environment, the Max “name
space” is shared but the signal processing “space” is independent; each plug-in processes audio
independently.

If you want to send data from one plug-in to another, then you can leave the names associated
with objects such as send , receive , table , and buffer ~ alone. But you cannot count on
communicating data within a plug-in using these objects without using special symbols that are
not “global” in the Max name space. This is due to the fact that the user can load more than one
copy of your plug-in, causing anything you put into a send object in one plug-in to come out
thereceive objects of all similar plug-in instances.

The solution—which works only in the runtime plug-in environment—is to start any name you
want protected from other plug-ins in the environment with three dashes (---). Examples are
shown below.

[send -—-BobBarker | [send™ ———MnntgHam

|r'e-:9'ive- ———E!-:-I:-E!ar'ke-r'l |r'ece-1've“’ ——=MantyHall |

The transformation of symbols starting with three dashes is only guaranteed to occur correctly
when the plug-in is being loaded. You cannot currently generate a new symbol on the fly using
an object such as sprintf that would be guaranteed to be local to the plug-in context in which it
was created.

Priority Level Concerns

This section presents some more in-depth information discussing the internal architecture of
the runtime plug-in environment that may be of use to you in understanding some of the issues
involved in its priority levels for control messages that are subtly different from those in Max.

76 Developing Plug-ins for Pluggo

Runtime Issues

The runtime plug-in environment has two basic priority levels, just like Max. Its high priority,
or interrupt, level is executed within the audio processing callback known as the process routine.
The low priority level is generally executed within an idle-time callback. Currently, the idle-time
callback only happens when a plug-in window—and this can be any plug-in window owned by
the runtime plug-in environment—is open. There are promises that in future versions of VST,
idle-time callbacks can be run when a plug-in window is not open, but this has not yet been
implemented. So, thus far, with this minor exception, the story is similar to the two levels in Max
when Overdrive mode is enabled. However, the story gets more complicated when the host tells
the plug-in to change a parameter value or its current effect program.

Parameters can be changed by the host as well as by the user of the plug-in. When parameter
automation is employed by the host mixer, parameter changes may be sent from the host to the
plug-in at interrupt level. The same holds true if the host automates program changes to the
plug-in. Since there is no way in the current VST standard to know the priority level of the
communication from the host to the plug-in, the runtime plug-in environment has to assume
that all parameter and program change messages from the host occur at interrupt level, since this
is the most restrictive case in terms of how the plug-in must behave. Therefore, it simulates this
condition by setting a flag during the handling of program and parameter changes sent from the
host declaring that processing is occurring at interrupt level. Objects that behave correctly at
interrupt level in Max should therefore behave correctly in the context of a parameter or
program change. There might be potential problems with a fake “interrupt level” that itself can
be interrupted, but we haven’t found any so far.

The runtime plug-in environment can tell the difference between parameters as changed by the
host and parameters as changed by the user moving an egg slider or within the plug-in edit
window’s Max-based interface, and it does not simulate the interrupt-level condition in these
two situations.

How does any of this information affect your plug-in? Here are some problems that came up
during the development of the PlugLoop and Very Long Delay plug-ins. In both of these plug-
ins, there is a parameter that sets the maximum time of a delay line buffer. The output of app
object is ultimately connected to a message that causes a sample buffer to be resized. In the case
of both the buffer ~ and tapin ~ objects, resizing a sample buffer is not something that can be
done “on the fly”"—it must be deferred to low priority since on the Macintosh, one cannot
allocate memory at interrupt level. When the host sends a program change message (which
resultsin all pp objects sending out new parameter values), the runtime plug-in environment
sets a flag telling the Max environment that it is running at interrupt level. This causes the buffer
resizing to be deferred until after the program change message. When the host gives the runtime
plug-in environment additional idle time, the resizing actually occurs. In this case at least, you
can see where parameter automation will not occur properly if the plug-in edit window is
closed, since the sample buffer will not be resized until the edit window’s idle time callback is
run. Apparently Waves plug-ins have a similar problem. You should note however that the vast
majority of plug-ins made with Max/MSP will not have a parameter updating problem since
almost all parameter changes can be handled immediately.

Developing Plug-ins for Pluggo 77

Runtime Issues

Inimplementing PlugLoop and Very Long Delay, we did a few things to minimize some of the
potential problems created by the need to defer a time- and memory-consuming operation:

« Weusedachange object on the output of pp so that the buffers will not be resized
unless the parameter value actually changes

« All preset effects programs have the same maximum delay time, so switching among the
presets will not cause buffers to be resized.

« The number box that changes the maximum time in PlugLoop is set to output only on
mouse up, so that the buffers won’t resize as the user is deciding how large they should
be.

Another problem in PlugLoop was that the clear message was being sent to the buffer ~ object
after a resize. Since PlugLoop uses three buffer ~ objects, this was a lot of clearing, and, unlike the
resize action, a clear to a buffer ~ will be executed immediately. If the program change arrived at
interrupt level, this means the clear would have been executed at interrupt level. It was worse,
since there was a delay object before the clear message, causing the message always to be sent
(and handled) at interrupt level. The effect of the interrupt-level clearing was to peg the CPU
utilization meters of host sequencers. The clear message was unnecessary, since the buffer ~ now
clears its memory after resizing, so it was removed. This is the sort of thing you could get away
with in Max, where no attempt to protect the user from massive CPU overload occurs (one
could argue that a click in the audio output is a lot easier for the user to deal with than a window
popping up and the sound stopping), but not in a sequencer, where apparently, protecting the
user from hearing any clicks is of prime importance.

Discontinuous DSP Networks

Consider a plug-in that takes input from plugin ~ and sends it torecord ~ to write the data into a
buffer. It then reads from the buffer ~ using play ~ and sends the output to plugout ~. The Slice-
n-Dice plug-in worked like this, until we discovered it would not work as an insert effect in
Cubase. As a send effect it was fine. What was happening?

Insert effects in Cubase pass the same signal vectors for their input and output. This means that
you cannot write asample to the output vector before reading it from the input vector,
otherwise you will write over your input. When you give it a configuration of DSP objects and
connections, the MSP signal compiler—which determines the order of processing in order to
execute your algorithm—is not always that smart. In the Slice-n-Dice case, it had decided it was
OK to perform the play ~ to plugout ~ section of the algorithm before the plugin ~ to record ~
section. This caused the output vector to be written before the corresponding input vector was
read. This does not cause problems (other than a signal vector size delay) in Max, nor in the
send effect case (nor in Vision, where the input and output vectors of an insert effect are never
the same). But it was a big problem in the Cubase insert effect case since, due to the fact that the
buffer ~ was initially empty, the play ~ to plugout ~ code would zero the output (which was also
the input) before it could be written into the buffer ~. The cycle would repeat itself as the zeroed
input continued to be written to the buffer ~, and no sound would be produced from the plug-in
atall.

78 Developing Plug-ins for Pluggo

Runtime Issues

There are a number of solutions to this problem. The one we adopted was to add a direct signal
path from the input to the output along with a gain control. This was needed to the make the
effect more useful as an insert effect anyway, and it caused the proper sorting of the DSP
network by the signal compiler, since there was no longer an ambiguity about which of two
discontinuous “pieces” of the network should be ordered first.

The moral of the story is that if you want to avoid these types of problems you should always
include a continuous path of signal objects from plugin ~ to plugout ~ in your plug-in.

Collectives

The Max collective file has a feature that allows you to open more one patcher when the
collective is opened. You do this by including multiple open commands in the collective script.
The runtime plug-in environment will only open one patcher when your collective is loaded—
the first one it finds. Since it’s not easy to guarantee what patcher is the first one, you should
avoid using this feature. You can safely include abstractions (separate patcher files that are
loaded as subpatchers). These should be added automatically when the collective builder
analyzes the dependencies of your patcher.

Developing Plug-ins for Pluggo 79

Appendix A

What’s not in the plug-in environment

Objects Not Included

bendin
benout
ctlin
ctlout
follow
midiformat
midin
midiout
midiparse
notein
noteout
polyin
polyout
seq
sysexin
timeline
touchin

touchout

External ObjectSupport Functions Not Available

Note: This list is only of interest to developers who might be writing their own Max/MSP objects
in C. All MSP support functions are available in the runtime plug-in environment.

editor_register
event_avoidRect
event_box
event_clock
event_new
event_offsetRect
event_save
event_schedule
event_spool
gwind_get
gwind_new
gwind_offscreen
gwind_setport

message_patcherRegister

(exported but does nothing)

80 Developing Plug-ins for Pluggo

What’s not in the plug-in environment Ap pend IX A

message_patcherUnregister (exported but does nothing)
message_register (exported but does nothing)
message_unregister (exported but does nothing)
midiinfo

off_copy

off_copyrect

off free

off_maxrect

off new

off_size

off_tooff

sprite_draw

sprite_erase

sprite_move

sprite_moveto

sprite_new

sprite_newpriority

sprite_rect

sprite_redraw

track_clipBegin

track_clipEnd

track_drawDragParam

track_drawDragTime

track_drawTime

track_eraseDragTime

track_MSToPix

track_MSToPos,

track_pixToMS

track_posToMS

track_setport

Developing Plug-ins for Pluggo 81

Index

about box for plug-in 21
accurate 44

adc~14,75

addview 42

assigning modulator connections 32
audio input 48, 75
autosize 43

beat division 73
capture4l

choices 69

code resource 11, 12
collective script 21
collectives 21, 79
communicating audio signals 76
Cubase 6,7

curve~ 30

cycle~ 75

dac~14,75

default interface 8
defaultview 26, 42

delay line 14

Digital Performer 6
Doppler effect 30
dragscroll 43

DSP chain 12, 34

edit window 10

effect programs 7, 18, 44
egg slider 10, 16, 20, 32, 67, 77
fixed 68

hidden 68

hintbg 46

hintfg 46

hints 20, 46, 67

host audio program 6
host mixer 6

host sequencer 6
idle-time callback 77
info view 21

infopict 45

infotext 45

Initialization 75
initialpgm 44

input vectors 12, 75
interrupt level 77

Les Demoiselles de Rochefort 46

level meter 43
line~29
loadbang 75
Logic Audio 6, 7
Macsbug 6

Max Audio Library for Plugins 11

Max patcher files 11
Max patcher interface 24
Max Window 76
MAXplay 11
MAXplugLib 11
menu object 31
Messages view 76
meter 43
MIDI objects 13
modulating parameters 31
modulator plug-ins 31
and audio 34
pop-up menu 32
multislider 28, 29, 56
select message 28
munging 28
name space 76
naming plug-ins 40
No Connection 51, 53
nohintarea 46
noinfo 45
numprograms 43
offset 26, 42
output vectors 12, 75
oversampling 45
parameter automation 77
parameter code 32
parameters 7, 33
defining 15, 28, 56, 67
modulating 31
randomizing 32
scaling 25
updating 77
Parameters View 10, 43
patcher code 32, 46
PICT file 45
plug-in
audio input 48
naming 40

82 Developing Plug-ins for Pluggo

Index

plug-in about box 21, 45
using pictures 21, 45
using text 45

plug-in initialization sequence 75

plug-ins
audio output 58
communicating between 76
identifying 46
sending audio between 60
synchronizing 72

plugconfig 7, 18, 26, 41
accurate 44
addview 43
autosize 43
capture 18, 41
defaultview 26, 42
description messages 45
dragscroll 43
DSP messages 44
hintbg 46
hintfg 46
host configuration 47
infopict 21, 45
infotext 45
initialpgm 44
meter 43
nohintarea 46
noinfo 45
numprograms 43
offset 26, 42
oversampling 45
preempt 45
program messages 43
read 41
recall 18, 41
script 19, 42
setprogram 19, 44
setsize 26, 43
sigvsdefault 45
swirl 46
uniqueid 32, 46
usedefault 42
useviews 21, 26, 42
view 42
view configuration messages 42
welcome 46

window configuration messages 43
windowsize 43
pluggo conventions 72
Pluggo plug-in 11
PluggoBus 73
PluggoSync 72, 73
plugin~7, 14,48, 75
Plugmaker 11, 22, 40
and Max external objects 40
Plugmaker.nostrip 40
plugmidiin 13, 49
plugmidiout 13, 50
plugmod 31, 32, 33, 34, 44,51
No Connection 51
plugmorph 53
No Connection 53
plugmultiparam 8, 28, 56, 62
setmessage 56
plugout~ 7, 14, 16, 58, 75
plugphasor~ 59
plugreceive~ 12, 60, 61, 73, 76
plugsend~ 12, 60, 61, 73, 76
plugstore 62
select 62
set 62
plugsync~ 63
plugtell 65
pp 8, 15, 19, 28, 32,67, 77
adding hints 20
bang 67
choices 69
color messages 68
connecting 15
dB 69
fixed 32, 68
Get Info... 67
hidden 32, 68
naming parameters 68
open 67
rawfloat 68
text 67
pptempo 70
pptime 71
priority levels 76
private symbols 76
process routine 7, 77

Developing Plug-ins for Pluggo 83

Index

program 7
rawfloat 67
read 41
recall 41
receive~ 12,76
receive 12, 76
runtime plug-in environment 6
select 28
send 12, 76
send~ 12,76
setprogram 43
setsize 26, 43
sfplay~ 14
sigvsdefault 45
Sound Manager 16, 75
start index offset 44
Steinberg 7,9
stereo effects 24
subpatchers 75
swirl 46
swirl mode 46
symbols

private 76
synchronization 72
synth 47
test signals 14
three-dash symbols 76
uniqueid 32, 46
usedefault 42
useviews 21, 26, 42
vibrato effect 24
view 42
View menu 26
Vision 6,7, 8
vst~6
welcome 45
windowsize 43

84 Developing Plug-ins for Pluggo

